
www.manaraa.com

INVESTIGATIONS IN ONTOLOGY BASED
SOFTWARE ENGINEEING

Thesis Submitted for the Degree of

DOCTOR OF PHILOSOPHY
(Computer Science)

By

Shilpa Sharma

To

Devi Ahilya Vishwavidyalaya, Indore
Under

Faculty of Engineering Science

2012

Supervised By

Dr. (Mrs.) Maya Ingle
Professor and Senior System Analyst

School of Computer Science and Information Technology

Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore (MP) - 452001

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27531534

27531534

2019

www.manaraa.com

DECLARATION BY THE CANDIDATE

I declare that the thesis entitled Investigations in Ontology Based Engineering

is my own work conducted under the supervision of Dr. (Mrs.) Maya Ingle at the

School of Computer Science and Information Technology, Devi Ahilya

Vishwavidyalaya, Indore approved by the Research Degree Committee. I have put

in more than 200 days attendance with the supervisor at the center.

I further declare that to the best of my knowledge, the thesis does not contain any

part of any work which has been submitted for the award of any degree either in

this University or in other University/ Deemed University without prior citation.

Signature of Supervisor

Dr. (Mrs.) Maya Ingle Shilpa Sharma

Signature of Head

Head
School of C:-r-, «• ■to- Science & IT

D .. ■

i

www.manaraa.com

CERTIFICATE OF THE SUPERVISOR

CERTIFICATE

This is to certify that the work entitled Investigations in Ontology Based

Engineering is a piece of research work done by Mrs. Shilpa Sharma under my

guidance and supervision for the degree of Doctor of Philosophy (Ph.D.) of Devi

Ahilya Vishwavidyalaya, Indore (M.P.), India. That the Candidate has put in an

attendance of more than 200 days with me.

To the best of my knowledge and belief the thesis:

(i) Embodies the work of the candidate herself;

(ii) Has duly been completed;

(iii) Fulfills the requirements of the Ordinance to the Ph.D. degree of the

University; and

(iv) Up to the standard both in respect of contents and the language for

being referred to the examiner.

Forwarded

Signature of Supervisor

Dr. (Mrs.) Maya Ingle

Signature of Head

Head
School of C ■r cieno© & P

D.V

ii

www.manaraa.com

DISSERTATION APPROVAL SHEET

Thesis entitled Investigations in Ontology based Engineering by

Mrs. Shilpa Sharma is approved for the award of the degree of Doctor of

Philosophy (Ph.D.) under the Faculty of Engineering Science (Computer

Science).

Dr. (Mrs.) Maya Ingle

Supervisor

Date:

Examiner(s)

Date:

in

www.manaraa.com

Acknowledgement

I am on cloud nine today as. I am writing the most important part of this

most important assignment of my life so far. The day I decided to go for research,

I was very fickle minded because I knew about the tough roads of this journey but

had no clue how to walk on. All it was as clear as mud for me. Finally, my iron-

will encouraged me to face the challenges and to do something productive. But,

what was that element behind my iron-will, what that ineffable energy which kept

me charge was and what was that invincible power which made me complete this

piece of work without failing. Well... Words are insufficient to express my

emotions towards that element, energy, invincible power or that omnipresent and

omnipotent almighty... I don’t know how to thank GOD because it’s only he who

has completed this work and has chosen me as a medium. I thank GOD for

creating a shield of grace around me and blessed me that I could work on this

useful and meaningful subject. Thank You GOD...

As it is correctly said that GOD cannot be present everywhere so he

created mother... I wish to add something more to it. GOD cannot come to us

every time so he created mother and the mentor. I convey my sincere gratitude

towards my supervisor Dr. (Mrs.) Maya Ingle, Professor and Senior System

Analyst, School of Computer Science and Information Technology, DAW who

not only is my supervisor for this research work but also a strong emotional

support for me throughout. She has handled me with care and made me wake up

and smell the coffee while required. She is an institution of knowledge, full of

enthusiasm for research and development and amazingly passionate for work. She

is and will be a great source of endless motivation and inspiration for me

forever... I realise this six letter word “Thanks”, is like a drop in the ocean in

view of her unmatchable determination of supervising my work round the clock.

Despite of her extremely busy days and evenings, she never refused me to speak

or meet to clear my doubts and guided me while I was chasing my tail. I am

fortunate enough to have her as a supervisor indeed. While, I was working with

IV

www.manaraa.com

her eventually I came across of her Utopia of this domain. I could not resist

myself to notice that she always dot all the i’s and cross all the t’s and

expect same from us for our betterment only. Dear Madam... I am obliged for

your holding arms during about to fall situations and on the tough surface

of this road map.

I owe my thanks to Late Dr. A. K. Ramani. It was his gracious presence

and overwhelming aura while I was registered for Ph. D. I am obliged for each

and every support provided by him. The overall learning from him will be highly

lucid and useful in my whole life.

I extend my sincere thanks for Dr. S. Tanwani, Professor and Head,

School of Computer Science and Information Technology, DAVY, for his

absolutely favourable gesture towards this research work. By providing excellent

resources as most effective weapons, he made this challenge easier for me indeed.

I gratefully acknowledge Sanghvi Institute of Management and

Science, for the support during the initial and most crucial phase of this journey. I

see eye to eye that, every long journey starts with a single small step or a good

beginning is the key to successful end. Let me admit that if I would not have got

the positive and co-operative environment here at SIMS, I could not have reached

to this state to write this work. Thank you SIMS... for providing me such an

incredible support, all desired facilities and essential elbow room to inspire me. I

sincerely thankful to Medicaps Institute of Technology and Management for

creating favourable and comfortable platform for me to keep going towards my

greatest achievement so far. I am extremely thankful to Dr. Shamsher Singh,

Chief Executive Director, MITM, for his firm interest in research and science

which enhanced confidence in me.

I am indebted to Dr. (Mrs.) Kshama Paithankar, Head, Shri Vaishnav

Institute of Management, and Dr. (Mrs.) Shilpa Bhalerao, Head, Acropolis

Institute of Technology and Research, Indore. Their knowledge and experience

played a vital role in this research work. Technical discussions with them have

v

www.manaraa.com

facilitated my yen to be fulfilled. In the absence of their encouraging association,

my level of enthusiasm would have gone down... way back.

And then I thank my colleague at MITM, Ms. Abhilasha Prasad, whose

enriching advices are unforgettable and praiseworthy. I remember how regularly I

used to bother her and she used to be bright and breezy all the time. I am thankful

to my ex-colleague at SIMS, Mrs. Preeti Gupta, who, by providing her

togetherness from the very beginning has really obliged me.

I am grateful to my In Laws for the support and encouragement they have

provided me to complete my study in spite that I could not spare time for them. I

don’t have words to thank my adorable parents, without their kind and cordial

blessings my dream could not be a came true story. Thanking you Aai, Baba for

your unseen but most effective and productive best wishes. I am indebted to your

ever supportive encouraging and empowering shower of words.

I appreciate my younger brother Ajinkya Kulkarni for his commendable

endeavour. Despite of his own crucial time of studies, he never denied to assist

me any ways. Whenever I needed him, he always before me with a boosting

smile. Also, I thank my sister Rupali Kulkarni whose distant but worthy

adhesion played a role of a booster this entire period of research work.

And, a big thanks to my dear husband Mr. Vishwas Sharma, whose

sprightliness, exceptional patience, emotional support and upholding alone all

societal relations empowered my efforts. His inspirational assertions worked as a

catalyst to elicit my allegiance and potential kept me in positivism. However,

there were few moments in past three years which turned me to panic but his

optimistic words used to keep relaxing me.

I am delighted to thank all my friends and well wishers whose name I am

missing to mention here and who directly or indirectly walked along with me

throughout. Their best wishes were the most effective tool during this period.

Thank you all...

Shilpa Sharma

VI

www.manaraa.com

Table of Contents

Acknowledgment

Page

iv

List of Figures xi

List of Tables xiii

List of Appendices XV

CHAPTER

1 Introduction 1-10

1.1 Preamble 1

1.2 State of Art 3

1.3 Objectives 5

1.4 Outline of Thesis 8

2 Literature Review 11-26
2.1 Introduction 11

2.2 Ontological Engineering 13

2.2.1 Themes 13

2.2.2 Specification and Conceptualization 16

2.3 Goals for Practitioners 19

2.4 Software Engineering Disciplines 20

2.4.1 Ontology Driven Information System 22

2.4.2 Software Requirement Engineering 23

2.4.3 Software Reuse 24

2.4.4 Software Reliability 25

2.4.5 Software Security 25

2.5 Summary 26

vii

www.manaraa.com

3 Ontology Driven Information Systems 27-57

3.1 Introduction 27

3.2 Background 28

3.2.1 Information Systems 29

3.2.2 Object oriented SDLC (OOSDLC) 30

3.2.3 Ontology Development Life Cycle (ODLC) 48

3.3 Mapping OOSDLC and ODLC in Information Systems 50

3.3.1 Ontology Driven Information Systems 50

3.3.2 OD1S Development 52

3.4 Results 56

3.5 Summary 57

4 Ontology Aided RE and Process Models 58-88
4.1 Introduction 58

4.2 Background 59

4.2.1 Requirement Engineering (RE) 60

4.2.2 Parameters of Study 62

4.2.3 Conventional REP Models 65

4.3 Ontology Aided REP Model (OntoAidedRE) 72

4.4 REP Models Vs. OntoAidedRE 76

4.4.1 Linear REP Model vs. OntoAidedRE 11

4.4.2 Linear Iterative REP model vs. OntoAidedRE 78

4.4.3 Iterative REP Model vs. OntoAidedRE 80

4.4.4 Spiral Model vs. OntoAidedRE 83

4.5 Comparative Study 85

4.6 Summary 88

5 Approaches for Ontology Based Reusability 89-131

5.1 Introduction 89

5.2 Background 90

viii

www.manaraa.com

5.2.1 Reuse Sub classes 91

5.2.2 Object Oriented Reuse process 93

5.2.3 Ontological Reuse Process 96

5.3 P4View Approach Based Framework 98

5.3.1 P4 View Approach 99

5.3.2 OntoP4ViewReuse Framework 101

5.3.3 Case Study 110

5.3.4 Benefits of OntoP4ViewReuse 112

5.4 Ontological Knowledge Modelling Based Algorithm 113

5.4.1 Ontological Knowledge Modelling 113

5.4.2 Ontology Based Reuse Algorithm OntoReuseAlgo 117

5.4.3 Case Study 119

5.4.4 Benefits of OntoReuseAlgo 123

5.5 Ontological Reuse (OnR) from 0-0 Reuse (OOR) 123

5.5.1 Mechanism of OnR Development 124

5.5.2 Categorical Comparison of OOR and OnR 124

5.5.3 Case Study 128

5.5.4 Benefits of Ontological Reuse (OnR) 129

5.6 Summary 131

6 Ontology Oriented Software Reliability 132-183
6.1 Introduction 132

6.2 Background 133

6.3 Ontology Oriented Reliability 135

6.3.1 00-Reliability Development Process 136

6.3.2 OnO-Reliability Development Process 138

6.3.3 Comparison of OO-Reliability and OnO-Reliability 140

6.3.4 Case Study and Comparative Analysis 141

6.4 Ontological Specifications 142

6.4.1 Onto Reliability Protocol 143

6.4.2 Case Studies 147

IX

www.manaraa.com

6.4.3 Benefits of OntoReliability Protocol 156

6.5 Software Reliability Quantification 156

6.5.1 Terminology 157

6.5.2 Ontological Reliability Quantification Method 161

6.5.3 Case Studies 162

6.5.4 Observations 173

6.6 Summary 175

Appendix 6.1 176

Appendix 6.2 178

Appendix 6.3 179

Appendix 6.4 180

7 Ontology Based Secured Project Development 184-220
7.1 Introduction 184

7.2 Background 185

7.2.1 Ontology Based Projects (OBPs) 186

7.2.1.1 Generality Oriented Ontology Based Projects 186

7.2.1.2 Requirement Oriented Ontology Based Projects 186

7.2.1.3 Reusability Oriented Ontology Based Projects 187

7.2.1.4 Reliability Oriented Ontology Based Projects 187

7.2.2 Benefits of OBPs 188

7.2.3 Unvisualized States 191

7.3 Secured Software Environment for OBPs 194

7.3.1 Abstraction Method (AM) 200

7.3.2 Case Study 202

7.4 Results 206

7.5 Summary 207

Appendix 7.1 208

8 Concluding Remarks 221-224

References 225- 243

www.manaraa.com

List of Figures

Page

Figure 2.1 Themes of Ontological Engineering 14

Figure 2.2 Modelling and Metamodelling for Ontological Engineering 17

Figure 2.3 Various Disciplines of Software Engineering 21

Figure 3.1 Object Oriented Software Development Life Cycle 31

Figure 3.2 Use Case Model of Flospital Management System 33

Figure 3.3 Object Model of Hospital Management System 34

Figure 3.4 Analysis Model of Hospital Management System 35

Figure 3.5 Design Model of Hospital Management System 36

Figure 3.6 Implementation Model of Hospital Management System 37

Figure 3.7 Use Case Model of Railway Reservation System 39

Figure 3.8 Object Model of Railway Reservation System 40

Figure 3.9 Analysis Model of Railway Reservation System 41

Figure 3.10 Design Model of Railway Reservation System 42

Figure 3.11 Implementation Model of Railway Reservation System 43

Figure 3.12 Use Case Model of Recycling Machine System 44

Figure 3.13 Object Model of Recycling Machine System 44

Figure 3.14 Analysis Model of Recycling Machine System 45

Figure 3.15 Design Model of Recycling Machine System 46

Figure 3.16 Implementation Model of Recycling Machine System 47

Figure 3.17 Ontology Development Life Cycle 49

Figure 3.18 Ontology Driven Information System Development (GDIS) 51

Figure 3.19 Generalized Use case Model of ODIS 53

Figure 3.20 Generalized Object Model of ODIS 54

Figure 3.21 Generalized Design Model of ODIS 55

Figure 4.1 Linear REP Model 67

Figure 4.2 Linear Iterative REP Model 67

Figure 4.3 Iterative REP Model 69

XI

www.manaraa.com

Page

Figure 4.4 Spiral REP Model 71

Figure 4.5 Ontology Aided Requirement Engineering (OntoAidedRE) 73
Model

Figure 5.1 Object-Oriented Reuse Process 95

Figure 5.2 Ontological Reuse Process 97

Figure 5.3 P4View Approach 100

Figure 5.4 Pretence View using High level Ontology 102

Figure 5.5 Problem View using Domain Ontology 104

Figure 5.6 Persuade View using Task Ontology 106

Figure 5.7 Product View using Application Ontology 108

Figure 5.8 OntoP4ViewReuse Framework 109

Figure 5.9 Classification of System Elements 114

Figure 5.10 Architecture of Ontolayering Principle 116

Figure 5.11 Ontology Based Reuse Algorithm (OntoReuseAlgo) 118

Figure 5.12 Redistribution between Warehouses Window 120

Figure 5.13 Object Oriented Reuse to Ontological Reuse 125

Figure 6.1 Object Oriented Reliability Development Process 137

Figure 6.2 Ontology Oriented Reliability Development Process 139

Figure 6.3 Layered Architecture of OntoReliability Protocol 144

Figure 7.1 Secured Environment for Ontology Based Projects 205

xii

www.manaraa.com

List of Tables

Pages
Table 4.1 Project Quality Indicators 64

Table 4.2 Online Examination System using OntoAidedRE 79

Table 4.3 Power Utility System using OntoAidedRE 81

Table 4.4 Hotel Management System using OntoAidedRE 82

Table 4.5 Credit Ranking System using OntoAidedRE 84

Table 4.6 Comparison of Requirement Engineering Process Models 86

Table 5.1 Inter-Warehouse Management System Work Product 121

Table 5.2 Identified Processes 122

Table 5.3 Influencing Product Attribute 122

Table 5.4 Object Oriented Reuse vs. Ontological Reuse 126

Table 6.1 Specifications for Placing Reservation 148

Table 6.2 Specifications for Change/ Cancel Reservation 149

Table 6.3 Specifications for Add/Delete Flight information/User 150
Reservations

Table 6.4 Specifications to Access Alumni Home Page 152

Table 6.5 Specifications of Survey 152

Table 6.6 Specifications to Create new entry 153

Table 6.7 Specifications to Update an entry 154

Table 6.8 Specifications for Searching for an Alumni/E-mail an 155
Alumni entry

Table 6.9 Various Project Categories with Architecture Styles 158

Table 6.10 Communication Oriented Projects 163

Table 6.11 Reliability Computation of Communication Oriented 165
Projects

Table 6.12 Deployment Oriented Projects 166

Table 6.13 Reliability Computation of Deployment Oriented Projects 168

xiii

www.manaraa.com

Pages
Table 6.14 Domain Oriented Projects 169

Table 6.15 Reliability Computation of Domain Oriented Projects 170

Table 6.16 Structured Oriented Projects 171

Table 6.17 Reliability Computation of Structured Oriented Projects 172

Table 7.1 Benefits associated with OBPs 189

Table 7.2 Unvisualized States incurred in OBPs 193

Table 7.3 Required Security Attributes in OBPs 196

Table 7.4 Perspective-Wise Benefits 201

Table 7.5 Categorization of Benefits &Associated Unvisualized
States

203

XIV

www.manaraa.com

List of Appendices

Appendix 6.1 Quality Attributes

Pages

176

Appendix 6.2 Devise Ideologies 178

Appendix 6.3 Crosscutting Concerns 179

Appendix 6.4 ORQM execution results 180

Appendix 7.1 Description of Software Projects 208

xv

www.manaraa.com

CHAPTER 1

Introduction

1.1 Preamble

Research on ontology is becoming a widespread in software engineering

community. Ontology is actually well known in philosophy research area since

1960s whereas in the artificial intelligence (AI) arena ontology has been focused

on knowledge modelling [FGJ97, GOMOl], The term ontology is used to refer to

explicit specification of a conceptualization of a domain [CJB99, DEV01].

In other words, ontology refers to a formalization of the knowledge in

the domain [LINK9]. Ontology is the concept which is separately identified by

domain users, and used in a self-contained way to communicate

information. Combination of concept is the knowledge base or knowledge

network [FMR98, JMY99, MA05]. These are some of the reasons that lead to

develop ontologies for various software engineering issues. These issues include

sharing common understanding of the structure of information among people or

software agents. In addition, ontology can be used to enable reuse of domain

knowledge and to make domain assumptions explicit for separating domain

knowledge from the operational knowledge etc. [FGD92, GFC04, GH03],

In addition, ontologies have been viewed from distinct vantage points such

as generality level, conceptualization structure type and nature of real world.

According to generality level, ontologies are classified into high level ontologies,

domain ontologies, task ontologies and application ontologies [GUA98]. In

accordance with the type of conceptualization structure, ontology categorizes into

terminological ontologies, information ontologies and knowledge representation

ontologies [HSW+97]. As said by nature of real world concern, ontology have

identified as static ontologies, dynamic ontologies, intentional ontologies and

social ontologies [JMY99]. Besides, this linear way of classifying ontologies

1

www.manaraa.com

based on only sole criterion does not allow for adequate reflection of the

problem’s complexity. Consequently, bi dimensional classifications, taking into

account two criteria such as the richness of the internal structure and the subject

of the conceptualization. In this bi-dimensional proposal ontology belongs to any

one of the categories such as controlled vocabularies, glossaries, thesauruses,

informal and formal hierarchies, frames and ontologies with

value and logical constraints [GOMOl],

These numerous and varying ways of ontologies have been elucidated in

order to serve knowledge based software engineering. In this manner, an ontology

may take a variety of forms, but necessarily it will include a vocabulary of terms,

and some specification. This includes definitions and indication of interrelated

concepts which collectively impose a structure on the domain and constrain the

possible interpretation of terms [UJ99].

Since ontology stimulation, substantial progress has been made in

developing conceptual bases to build skill that allows reusing and sharing

knowledge [GHW02, GS02], As stated earlier, ontology has been created to share

and reuse knowledge and reasoning behavior across domains and tasks. In this

evolution, the most important fact has been the emergence of Ontology Based

Software Engineering. It is an extension to current software engineering practices,

in which the information is given a well defined meaning, better enabling

resources and people to work in mutual aid. This mutual aid can be achieved by

using shared knowledge thereby ontology has become key instrument in

developing knowledge based software systems [GOM98, NFF+91, SSS+01].

In addition, ontology enfolds the attributes such as completeness,

unambiguous, intuitive, generic and extensible. Completeness can be achieved by

glancing at the different activities performed within software development.

Ambiguity can be avoided by providing simple and concise definitions for each

concept, as well as semi formal model of the complete ontology. Intuitiveness can

be obtained by exploring the different communities participate in software

development activities and by providing conceptual subset particularly adapted

2

www.manaraa.com

for each of them. Generality can be attained by upholding the ontology as small

and as simple as possible and by trying to remove from it rather than add to it, as

many concept as possible. The aim is to accomplish maximum expressiveness by

being minimal. Finally, extensibility is realized by providing

the appropriate mechanisms and anchors the points from

which to add new concepts [BAR06, MF03, OVR+06],

Thus, the major contribution of ontology can be acquired in establishment

of the software development methodologies such as generic software engineering,

requirements engineering, reuse engineering and reliability engineering. Next, it

provides best guidance to attain a life-cycle model best suited to the planned

software development. Subsequently, ontology aids identification of main inputs,

outputs and activities to be performed in order to develop the knowledge oriented

approach. Knowledge sharing effort envisioned building knowledge-based

software systems. Subsequently, the system developers need to create specialized

knowledge and reasoners new to the specific task. This new system interoperates

with existing systems, using to perform some of its reasoning. In this way,

declarative knowledge, problem solving techniques and reasoning services would

all be shared among systems. The knowledge and problem solving methods are

modeled by means of ontology [DW99, RL02]

1.2 State of Art

Traditionally, software engineering termed as modelling activity. Software

engineers deal with complexity through modelling, by focusing at any one time

on only the relevant details and ignoring everything else [AW06, BOS95]. Later

on, software engineering becomes problem-solving activity. Object-oriented

methods combine the problem and solution domain modelling activities into one.

The problem domain is first modelled as a set of objects and relationships. This

model is then used by the system to represent the real-world concepts it

manipulates. Thus, object modelling in software engineering influence all effort in

information science [JAC92, WER+97]. Object models are different from other

3

www.manaraa.com

modelling techniques because these have merged the concept of variables and

abstract data types into an abstract variable type known as object. Objects have

identity, state, and behavior and object models are built out of systems of these

objects. To make object modelling easier, there are concepts of type such as

inheritance, association, and class. Object modelling focused on

identity and behavior and is completely different from the

traditional model’s focus on information [BKK+02],

But, it is observed that models are used to search for an acceptable

solution. This search is driven by experimentation and software engineers do not

have infinite resources and are constrained by budget and deadlines. Given the

lack of a fundamental theory, engineers often have to rely on empirical methods

to evaluate the benefits of different alternatives Thereby software engineering

turns into knowledge acquisition activity [GOM+98, MA05]. In modelling the

application and solution domain, software engineers collect data, organize it into

information, and formalize it into knowledge. Knowledge acquisition is nonlinear,

as a single piece of data can invalidate complete models.

For the same reason, software engineering explores as a rationale-driven

activity. When acquiring knowledge and making decisions about the system or its

application domain, software engineers also need to capture the context in which

decisions were made. This additional knowledge is called the rationale of the

system. First, for every decision made, several alternatives may have been

considered, evaluated, and argued. Consequently, rationale represents a much

larger amount of information than the solution models do. Second, rationale

information is often not explicit. Developers make many decisions based on their

experience and their intuition, without explicitly evaluating different alternatives.

In order to deal with changing systems, however, software engineers must address

the challenges of capturing and accessing rationale [RL02, TAOO].

In this perspective, we use ontology an optimum solution. Ontologies are a

promising instrument for knowledge transfer from project to project in a certain

application domain and from one development cycle of a project to the next

4

www.manaraa.com

project development cycle [SMJ02, OVR+06, VSS+05]. In the mid and long-term

future, it might become an attractive software engineering paradigm which serves

for closer co-operation, better compatible models, and more re-usable components

in the software development field. Ontology here refers to the basic existential

pool of knowledge in the world that is of interest to the discipline. In this view,

the explicit treatment of knowledge and emphasizing on the category of

requirement in requirement engineering practices suggests a fundamental shift in

the domain oriented underpinnings of requirement engineering process. In

addition, one of the main advantages of the ontology is its comprehensibility. The

ontology helps to achieve some lucidness of unclear concepts related with

software reuse reliability and security. Besides, the concepts were linked

rigorously. Thus, there is tremendous scope in these sub domains of Ontology

Based Software Engineering for researchers and practitioners.

1.3 Objectives

We have performed our research after reviewing the potential of ontology

and designed the objectives on the basis of major challenges in front of current

communities of software developers and practitioners. These challenges include

knowledge integration and generic involuntary support. We have designed some

ontology oriented models, framework and methods to chase these challenges.

These models and methods are assessed on the basis of case studies and

information received from case studies has been analyzed. Proposed works along

with their case studies and results have been published in various national,

international conferences and journals.

Our first objective is affirmed to build ontology for various information

systems that enable the developers to reuse and share application domain

knowledge using a common vocabulary across heterogeneous software

applications [SIlOa]. Ontologies involve the specification of concepts and

relations that exist in the domain, definitions, properties and constraints mapped

with each phase of Object Oriented Software Engineering. Thus, the phases such

5

www.manaraa.com

as ontolysis, ontodesign and ontocontation are turned out to generate Ontology

Driven Information System {ODIS) [SIlOb, SI1 la].

Our next objective is avowed with the advent of knowledge intensive

practices in requirement engineering. Consequently, ontology has become a

definitive choice. It not only facilitates the confining of knowledge strenuous

environment for requirement engineering but also enrich sharing of knowledge

across various applications from different domains. Also, the ontology assists m

defining information for the exchange of semantic software requirement

specification data. Ontology aided requirement engineering endorses the

categories of requirement to elicit, represent and analyze the diversity of factors

associated with requirement engineering carried out using different requirement

engineering process models. It forms various layers such as OntoPre

Requirements, Ontolnput Requirements, OntoSystem Requirements and

OntoOutput Requirements depending upon requirement type and promotes the

cohesiveness between the artifacts generated at every requirements engineering

activity of different applications [SI1 lb, SI11c].

The subsequent objective is asserted to apprehend the software reuse

through combining the conceptions of domain with stronger extensibility and with

indexing knowledge population [SI 12a], The ingenious approach for software

development with ontology validated composition in highly variable domains.

The approach makes use of business domain ontologies and ontology of the

domain of information system engineering. Furthermore, it relates several

dimensions of software development in the course of various abstraction levels

such as Pretence, Persuade, Problem and Product. It initiates with the pretence

view by identification of knowledge sources useful for the application domains.

Subsequently, an automatic translation of the source ontologies from a common

format to the representation languages is carried out at the problem view. In

addition, matching of the ensuing method is accepted at the Persuade view.

Finally, the application ontologies revealed the reuse source vocabularies to a

large extent in the Product View [Sllld], Next, we have proposed an ontology

based reuse algorithm OntoReuseAlgo towards process planning in software

6

www.manaraa.com

development. OntoReuseAigo attempted to obtain a new process plan under new

implementation requirements by modification of certain concepts and entities of

the current process. Ontological knowledge modelling has been used to give a

uniform representation of the involved information [SI1 le].

Later objective is resolute to the reliability advancement using ontologies.

Ontology-Oriented Reliability (OnO-Reliability) development has been proposed

to enhance Object Oriented Reliability (OO-Reliability) development with the

help of resources, process and product attributes. In order to achieve this goal, we

have introduced the Onto-self-ensuring recognition ordeal, Onto-multiple

requests/confirmations and Onto-immunity management routines [SI 12c], Making

use of these, the OnO-Reliability development enables software architects and

reliability experts to formally, explicitly, and coherently conduct reliability

modelling. Besides, to improve the software reliability an OntoReliability

Protocol has been proposed for developing software specifications called

OntoRelSpecifications. It commenced reliability with abet of description,

preconditions, post conditions, standard courses, proxy courses, exceptions,

inclusions, primacy, rate of uses, exceptional requirements and remarks and

concerns [SI 12b]. Finally, to quantify software reliability we have proposed an

Ontological Reliability Quantification Method (ORQM) with identification of

Project Category (PC) based on architecture style and highly helpful to the

developers to deal with software excellence.

Security has become an important quality for an ontology driven software

system. While developing an ontology oriented project, various side effects occur

due to the unvisualized states mainly; uncertainty, variability, ambiguity and

complexity. We have suggested an Abstraction Method (AM) for developing the

secured environment for ontology based projects developed with various

perspectives such as generality, requirement, reuse and reliability engineering. It

has been noticed that the influence of kinds of benefits associated with each

perspective leads to aforementioned unvisualized state. Various security

attributes corresponding to these perspectives are allocated to ensnare kinds of

unvisualized states accordingly.

7

www.manaraa.com

1.4 Outline of Thesis

This thesis is organized in eight Chapters to cover the research issues in

the area of Ontology Based Software Engineering. These aspects mainly include

enhancing generality, requirement engineering, reusability, reliability and

security. A general overview of the said research field is provided along with its

various aspects. A related state of art is presented subsequently. Also, the

objectives of the proposed work have been mentioned in this Chapter.

We provide literature survey along with our view to Ontology Based

Software Engineering research domain in Chapter 2. We present ontological

engineering in the context of other disciplines and observe that it enables to

enhance various issues of software engineering area. In this view, goals of

software practitioners are covered to create new ways to build and improve

knowledge in software engineering issues.

Chapter 3 illustrates development of ontology for various information

systems to ensure the generality. In this view, we have discussed development

phases of OOSDLC and ODLC in details. Various information systems along

with their object-oriented development phases are covered in this Chapter. In next

section, we have highlighted the OOSDLC phases and with various phases of

ODLC in Information Systems. This mapping divulged ODIS. Base upon the

mapping, we have introduced generalized models for corresponding to each

phase. Lastly, we have shown the results of mapping of phases of

OODSDLC with the phases of ODLC.

Chapter 4 depicts the comparison of various conventional Requirement

Engineering Process models (REP) with Ontology Aided Requirement

Engineering model (OntoAidedRE). For the same reason, we have discussed the

parameters of study related to project such as Project type. Project size, Project

team, Project quality, Project prioritized element and Project key element. These

play a very significant role in RE for various types of projects. Next, conventional

REP models with advantages and limitations in term of practices have been

highlighted in next Section. Also, we have presented Ontology Aided

8

www.manaraa.com

Requirement Engineering model (OntoAidedRE) covering requirement type,

practices and suitability. Consequently, we have compared conventional REP

models namely; Linear, Linear Iterative, Iterative and Spiral models with

OntoAidedRE. The study reveals that none of conventional REP models acquire

all project parameters. Therefore, we presented OntoAidedRE to show a

knowledge-driven as opposed to process-driven approach to RE. It can be put into

practice to overcome the problems of conventional REP models and consequently

the project parameters optimally contrived by adapting OntoAidedRE.

In Chapter 5, first, we have discussed existing reuse subclasses followed

by introduction of Object Oriented and Ontological Reuse process. Then, we have

presented a reusable framework OntoP4ViewReuse based on ontology oriented

systematic P4View approach for reusing. The necessity of P4View approach is to

make available ontological knowledge that is implicitly tailored to specific

application needs. OntoP4ViewReuse bring about to apply the ontology of varying

levels such as high level, domain, task and application ontology. Consequently,

we have explored a range of benefits of using OntoP4ViewReuse. In addition, to

build a common conceptual base characterized by knowledge. Ontology Based

Reuse Algorithm (OntoReuseAlgo) for process planning has been proposed. Also,

the significant benefits of OntoReuseAlgo have been drawn. In addition.

Ontological Reuse (OnR) has been devised from Object-Oriented Reuse (OOR)

and effectiveness of OnR has been highlighted with comparative study based on

software component, architecture, requirement, process, technology and

experience reuse subclasses. Lastly, benefits of OnR have been delineated.

Software reliability achievement is a challenging task due to its

dependency on users’ perspective. In Chapter 6, we have introduced ontological

approach for reliability achievement over object-oriented approach followed

by a comparative analysis to outline the scope of

Ontology Oriented Reliability (OnO-Reliability). In addition, ontological

specifications have been developed using OntoReliability protocol and presented

some case studies to practice this protocol. Subsequently, the benefits have been

discussed. In the last Section, we have attempted to quantify the reliability of

9

www.manaraa.com

various project categories using project parameters and hence we have introduced

Ontological Reliability Quantification Method (ORQM). Then, we have

conducted a study of different project case as per the category with varying

number and type of parameters and establish the fact that ORQM generates direct

empirical value for software reliability. Finally, we conclude that ORQM is not a

informal method but found to be a highly useful in absence of reliability experts

and historical failure data.

Chapter 7 turns to one of the most important concept introduced in

Ontology Based Projects (OBPs) i. e. software security. It deals with OBPs

developed using various perspectives such as generality, requirement engineering,

reusability and reliability. It has been noticed that the influence of kinds of

benefits associated with each perspective leads to different unvisualized state. We

have proposed secured software development environment for OBPs with various

perspectives with the help of Abstraction Method (AM). This method aids

different security attributes corresponding to these perspectives have been

allocated to ensnare the kinds of unvisualized state accordingly. Finally, AM

provides analytical scheme to acquire secured environment for different OBPs.

In Chapter 8, we have concluded with the contribution of our work

presented in the area of Ontology Based Software Engineering in this thesis.

10

www.manaraa.com

CHAPTER 2

Literature Review

2.1 Introduction

Ontological engineering has garnered increasing attention over the last

few years, as researchers have recognized ontologies. Ontologies are not just for

natural language processing, metaphysics, common sense knowledge and enterprise

modelling etc. [DEV02, FCM+03]. However, it caters software engineers in

modelling various applications of the world and hence can make use of ontologies

to obtain knowledge based applications [CJB99, FGD92, FMR98]. In addition, a

recent survey of the field suggests developers of practical software systems may

especially benefit from ontology use [FH97, MAOS, NHMOO]. This survey

earmarked several application classes of software engineering that benefit from

using ontologies. These classes include generalized information system

modelling, software requirement engineering, software reuse, software reliability,

software security and abstraction [ABH+99, BOE96, DEV02, FMR98].

Ontologies are explicit representations of domain concepts and provide

basic structure or armature around which knowledge based system can be

constructed [ST99]. Ontology is a system of concepts and relations, in which all

concepts are defined and interpreted in a declarative way [DEV02, GFC04],

System defines the vocabulary of a problem domain and a set of constraints that

can be combined to model a domain. In a distributed environment, agents use

ontologies to establish communication at the knowledge level using specific

languages and protocols [BTD04], Ontologies are explicit representations of

agents’ commitments to a model of the relevant world and hence enable

knowledge sharing and reuse [JMY99, NFF+91, LINK9],

11

www.manaraa.com

Ontological engineering encompasses a set of activities conducted during

conceptualization, design, implementation and deployment of ontologies.

Ontological engineering covers topics including knowledge representation

formalisms, development methodology, knowledge sharing and reuse, knowledge

management, business process modelling, systematization of domain knowledge,

information retrieval, standardization, and evaluation [MIZ98, NFF+91, H0098], It

also provides design rationale of a knowledge base, helps to define the essential

concepts of the world of interest, allows for a more disciplined design of a knowledge

based system, and enables knowledge accumulation [DW99, GOMOl, SSS+01],

Several special issues of journals and magazines dedicated to the field of

ontologies have described current trends in the field of ontologies. These include

creating large-scale ontologies, defining expressive languages for representing

ontological knowledge, and implementing systems that support ontology-based

applications [CJB98, CJB99, LGS+99, LEN95, SRK+97, VRM+99],

Unfortunately, a vast majority of these articles have not covered the relations

between ontological engineering and other software engineering areas. As a

result, specialists from other disciplines struggle to understand

the benefits of ontologies, and to map the terminology of ontological

engineering to their own fields.

The organization of this chapter is done as follows: Section 2.2 elaborates

ontological engineering, its themes and aspects of two general disciplines that

help to develop ontologies at specification and conceptualization stage such as

modelling and metamodelling. Section 2.3 emphasizes on goals of software

practitioners. Moreover, it attempts to clarify the skills useful for practicing

ontology based software engineering. Various disciplines of software engineering

which cater by ontology are discussed in Section 2.4. Finally, we conclude in

Section 2.5 with the summary.

12

www.manaraa.com

2.2 Ontological Engineering

Ontological engineering field has been subject to considerable study and

research during the last decade. It is observed that, ontological engineering refers

to the set of activities that concern the ontology design principles such as clarity,

minimal encoding bias, extendibility, and coherence [UG96, DEV02, GFC04],

According to principle of clarity, ontology should communicate effectively the

intended meanings of defined terms. Also, definitions should be objective and

defined by necessary and sufficient conditions. Whereas, minimal encoding bias

principle suggests that the conceptualization should be done at knowledge level

without depending on a particular symbol level encoding. Then, in line with

principle of extendibility, ontology designer should be able to define new terms

for special uses based on existing vocabulary. Lastly, principle of

coherence states that ontology should sanction inferences that are consistent

with the existing definitions [GRU92], Now, we describe various themes of

ontological engineering in this section.

2.2.1 Themes

Ontological literature on ontologies and ontological engineering usually

covers the concepts shown in Figure 2.h While, we put ontological engineering

in the context of other disciplines, many similarities and analogies arise. These

similarities allow practitioners to make connections between ontological

engineering and other disciplines, to bridge comprehension gaps, and to see

known concepts and practices in another light.

Naive Physics and Commonsense Knowledge

Ontology about naive physics is defined as the ontology for liquids

developed by Hayes [HAY85]. Naive physics can be hard to formalize such as the

problem with knowledge about liquids is that they have no definite shape and can

merge split mix in mysterious ways. Formalizations of knowledge about

physical objects can be found in [CLA81, S87, CRC95, BBW96b]. Ontologies of

13

www.manaraa.com

microscopic and macroscopic views on the electrical domain are

combined by Liu [LIU92], Conversely, aim of Cyc project is to build up a

large knowledge base with commonsense knowledge [LG90, LINK9], In addition,

to help structuring knowledge in the knowledge base, ontology of common-sense

top-level concepts have been developed [HOB85, DAV90],

Engineering and Technical Applications

Ontologies have been developed for engineering and technical

applications. Ontology for the Sisyphus elevator design problem (VT) is

described in [ST99]. In KACTUS project, ontologies for diagnosis of electrical

networks and for the exchange of knowledge about ship design and oil platforms

have been written [LAB+96], YMIR ontology is a domain independent, sharable

ontology for the formal representation of engineering design knowledge, based on

systems theory [ALB93], PHYSSYS ontology is less biased to a mathematical

representation [BAT97]. Knowledge formalized in PHYSSYS has been used to

develop number of applications such as a model revision assistant, OLMECO

library of model fragments for simulation and for ecological product disassembly

analysis. EngMath is an ontology used for mathematical modelling in engineering

applications [GRU92], It has been reused many times such as in PHYSSYS and in

CML. CML is an ontology about time, continuity and object properties to enable

the sharing of models based on compositional modelling [FFB+94, FF91 FOR84].

In addition, CML ontology has been used to develop ontology for thermodynamic

systems and ontology for VT.

Penman Upper Model is a general model about natural language that can

be used for the generation and processing of different languages such as Italian,

German and English [BMR94], Other ontologies formalize tire semantics of the

part-whole relation in natural language [GUA04], Also, natural language about

movement in the French language has been formalized [SAB93]. Ontologies are

also used for the development of systems for extraction of knowledge [VRS99],

15

www.manaraa.com

Corporate and Enterprise Modelling

TOVE ontology formalizes knowledge about production/ communication

processes, activities, causality, resources, quality and cost in business

enterprises [FCF93, GS02], Ontologies have also been developed for the

implementation of knowledge bases for formalization and conservation of the

knowledge of experts in enterprises such as KONE ontology that deals with

conservation of corporate knowledge about crankshaft design [GRU92],

Medical Diagnosis and Knowledge Acquisition

Knowledge in the medical domain about diagnosis, therapy planning and

patient monitoring has been formalized in the GAMES-II

project [FS94, HSW+97], As ontology formally specifies meta-level domain

knowledge, it can be an excellent specification for tools that acquire knowledge

from domain experts such as PROT 'EG'E-II project [FGD92].

2.2.2 Specification and Conceptualization

We have observed that, desirable qualities for ontologies such as being

decomposable, extensible, maintainable, modular and interfacable tied to the

information analyzed, universally understood, and translatable

characteristics [FGJ97, GUA04]. Also, these are desirable for interoperable

software components or classes of objects in object-oriented

design [KG02, GFV96, SMJ02, WAR09]. Practitioners from other fields may use

different terminology but its meanings are often similar. Hence, Figure 2.2 shows

aspects of two general disciplines that can help develop ontologies at

the specification and conceptualization stage namely; Modelling and

Metamodelling [AW06, GL02]. In practice, knowledge of these disciplines helps

to organize the knowledge acquisition process. Moreover, it specifies the

ontology’s primary objective, pmpose and scope. Lastly, it builds initial

vocabulary and organizes taxonomy in an informal or semiformal way and

possibly using an intermediate representation [SBF98, MSOO, RL02, VSS+05].

16

www.manaraa.com

Modelling

Ontologies are specific, high-level models of knowledge underlying all

things, concepts, and phenomena [GS02, GHW02], While with other models,

ontologies not represent the entire world of interest. Rather, ontology designers

select aspects of reality relevant to task [CJB98, VRM+99], For example in

domain of books, ontology designer selects one set of book attributes when

developing ontology of a library, and different set when developing ontology of

bookbinding. All models follow principles and constraints termed as concept

relations and axioms [SMJ02], Although, there exist different ways to represent

ontologies such as ontological engineers most frequently use hierarchical

modelling at conceptualization level [DR99, LEN95]. These ontologies represent

concept hierarchies and taxonomies in layers and use pictorial representation to

visually enhance representation [FGD92]. Layers in ontology representation range

from domain-independent to task and domain-specific. As a result, ontologies

contain knowledge of appropriate hierarchical and or layered

models of relevant world [GFV96, GF95].

Metamodelling

Conceptualizing and specifying ontologies have a strong metamodelling

essence [GS02, GHW02], A metamodel of a modelling technique, improves the

rigor of different but similar models [FS97]. Ontologies accomplish same for

knowledge models. Without ontologies, knowledge bases representing knowledge

of the same domain are generally incompatible while using similar knowledge

models [CAC01, H0098, NFF+91]. Metamodelling is preferred because it allows

practitioners to preserve the usefulness of any specific model. Ontology simply

provides the skeleton for the corresponding models of the domain

knowledge [GFV96, GF95]. Generally, ontology is a metamodel describes a way

to build models. Its components such as the concepts it defines and the relations

between them are always (re)used as building blocks when modelling the parts of

domain knowledge [MF03, TLOO, SMB07]. When developing a practical software

system, it helps the mechanism that with built-in knowledge of the models to be

deployed and makes the development mechanism intelligent [KL02],

18

www.manaraa.com

Many potentially useful parallels exist between ontological engineering

and software engineering disciplines such as software architectures and software

patterns [GF95, SS99]. It is observed that, many practitioners understand

similarities between phases of the ontology development and software

development processes [EW05, WAR09], Thus, there exist potential scope of

research and software practitioners can benefit from knowing more about such

useful parallels. To accomplish this, software practitioners must seize a range of

goals with the help of ontological engineering.

2.3 Goals for Software Practitioners

For software practitioners, ontology based development is extremely

important to attain software knowledge acquisition, exchange and

reuse [BAR06, DEV02, GUA98, CJB99]. However, ontological engineering

enable achieving a range of goals such as to precisely define terms and highly

structured definitions of domain concepts, not text-based information. Next, it

provides consensus knowledge of a community of people and high

expressiveness. Then, coherence and interoperability of resulting knowledge

bases is made available by it. In addition, it endows with stability and scalability

of ontologies. Lastly, it organizes a foundation for solving a variety of problems

and constructing multiple applications.

Although, ontologies are content-related than representation-related and

achieving these goals calls for formalization and co-existence of artistic creativity

and systematically applied knowledge from other disciplines [DW99, FCM+03].

Ontology can be developed collaboratively by many distributed individuals and

organizations with differing expertise, goals, and interactions. Various

communities of experts and practitioners examine problems from different

perception and are concerned with different dimensions of the content’s semantics

and representation [MAOS, NM04, SSS+01]. These individuals need to properly

understand each other and meaningfully communicate their views of domain

knowledge to form meaningful higher-level knowledge [OVR+06, TAOO].

19

www.manaraa.com

Once application developers are ready to use the ontology, developers

should be able to convert it into a desired form, such as object base or knowledge

base, using representation methods [GRU92], Hence, ontological engineering

must rely on several content formats, frameworks, and development strategies that

reduce semantic ambiguity and allow for sharing and reusing knowledge and

practices from other disciplines. In addition, ontological engineering involves

developing higher-level knowledge-based products that express the consensus

knowledge of a community of agents [SMB07, MC06, CHK+07]. Certain

software engineering disciplines and issues rarely discussed by ontology researchers

that can help software engineers and practitioners. These include knowledge

intensive information system modelling, software requirement engineering,

software reuse, software reliability and software security and

abstraction, as presented in Figure 2.3.

2.4 Software Engineering Disciplines

Software developers consider ontologies as a trend involving methodology

and technology as AI community develops ontologies that use special-purpose

mechanisms [SMJ02, WAR09]. However, ontology is always about entities and

relationships. In addition, methodology from traditional software engineering such as

using ER model, top-down decomposition strategy and structured system analysis

are used to represent it. For example, Methontology framework for developing

ontologies proposes a close relative of traditional waterfall model of software

development for an ontology development lifecycle [FGJ97, LGS+99], Moreover,

entire ontology developed using Methontology framework is stored in a relational

database and can encode its ontology in its data dictionary [MIZ98, FH97], All

design criteria for ontologies, such as clarity, extensibility, coherence, and minimal

encoding bias also represent design criteria for software systems

modules [FCM+03, GF95], Ontology researchers and developers can explore a large

7.0

www.manaraa.com

variety of iterative and incremental traditional software development methodologies

for new ideas in ontology based software engineering. We consider some of them and

discuss as follows:

2.4.1 Ontology Driven Information System

Ontology development process nearly coincide with those of object-

oriented software development [LGS+99, MIZ98, VRM+99]. In both cases, it is

important to assemble domain vocabulary in the beginning, often starting from the

domain’s generic nouns, verbs, and adjectives [FS97, ST99, GFV96, GF95].

Object-oriented analysis stresses different aspects than ontological analysis and

yet analogous [MIZ98, JAC92, SMJ02], The result of object-oriented analysis is a

draft of domain ontology relevant to the application. Besides, as object-oriented

designers define classes, objects, hierarchies, interface functions and system

behavior, ontological engineers use intermediate representations such as

semantic networks, graphs, and tables to design hierarchies and other concept

relationships [CAC01, FEA+02]. Both types of specialists use templates to

specify product details [FS97, LGS+99], Classes can be merged or refined with

ontologies. Class libraries and previous design specifications often provide reuse

in object-oriented design with the help of previously

encoded and available ontologies [FMR98, JCJ+07, WAR09].

In addition, important differences exist between Ontology Development

Life Cycle (ODLC) and Object Oriented Software Development Life Cycle

(OOSDLC) from practitioner’s perspective. ODLC signifies knowledge-level

stance in describing system, while OOSDLC largely refers to the means of design

and implementation [CJB99, H0098], For example, in semantic-based

information retrieval system, ontologies specify the meaning of concepts to be

searched, while object-oriented design represents domain models [KL02, MSOO].

Object-oriented design languages such as UML offers explicit design

methodology and notation for all design artifacts, but ontological and

metamodelling principles are only implicit in those languages [MIZ98, BKK+02],

In other words, ontology is abstracted at knowledge level from corresponding

class diagrams, object diagrams, and use-case diagrams, represented in any

22

www.manaraa.com

object-oriented notation such as UML [SBF98, WER+97, SK03]. The role of

ontology is to convey and explicitly specify domain concepts, terms, definitions,

relations, constraints, and other semantic contents that object-oriented analysis

and design should rely on and support [EMB04, GUA04, MC06, SS06, SK04],

It is observed that one area of ontology based software engineering

requires additional efforts involves developing a generally accepted notation for

representing ontologies. Software engineers have used several different notations

in object-oriented design over the past decade, but all have converged to UML

notation, which provides a metamodel of object-oriented design. It defines

graphical notation for representing classes, objects, and relationships, covering all

practical aspects of object oriented design [JAC92, JCJ+07]. But, ontological

engineering strive standard notation that is accepted,

understood, and used in practice [VRM+99 FS97, WAR09].

2.4.2 Software Requirement Engineering

The basics of ODLC involve designing and specifying overall system

structure and underlying organization [GUA98, GUA04, H0098]. Ontologies are

architectural armatures for building knowledge bases, models, and software

structural designs [SBF98, ST99], This assertion helps requirement engineers to

build requirement specifications of any application. Structural design style in the

field of requirement engineering, characterizes a family of systems related by

shared structural and semantic properties [SHA95, LV02, LV04].

A style typically defines a vocabulary of design elements, design rules

for compositions of elements and semantic interpretation of design

element compositions [VAN03]. Many successful designs can share a style.

Styles contain condensed skeletons of the architectural knowledge gained

by experienced software designers, and provide a means to

reuse that knowledge [BOE96, BOS95, LPR93].

In addition, ontologies structure knowledge in form of layers to separate

use-specific knowledge from more reusable knowledge [MIZ98, VRM+99], Other

structural design styles help to define requirement engineering solutions include

23

www.manaraa.com

pipeline and data abstraction [SHA95, BL03, EW05]. In addition, layered style is

suitable for applications involving distinct classes of services that can be arranged

hierarchically. It is explored that, researchers have proposed layers for building

requirements by considering basic system level services and utilities appropriate

to many applications [ST99, SG05, SPL06, ZZY+07]. But, it lacks in specific

application task that depends on requirement type to make knowledge intensive

requirement engineering process.

2.4.3 Software Reuse

Early software reuse practices focused on code and made ad hoc.

However, reuse changed as the industry matured. Reuse became planned and

systematic [ABH+99, DEV02, GUA98], Currently, any product of the software

life cycle can potentially be reused. According to some researchers the active

areas of reuse research includes reuse libraries, domain engineering

methods and tools, reuse design, design patterns, domain specific

software architecture, component, generators, measurement

and experimentation [MA05, HAM04, NM01, RL02]. However, ideas emerging

from this period lacks in reuse design principles, commonality and variability

analysis, and various approaches to knowledge generators [FK05].

A significant objective of ontology is to build reusable knowledge

components and knowledge-based services that can be invoked over

networks [SZY98, REI97, MVI95, SS99]. Consequently, software engineering

field is attempting to develop repositories of reusable, pretested, interoperable,

and independently upgradable software components that enable plug-and play

design. These objectives necessitate designing systems from application elements

constructed independently by developers using different languages, tools, and

computing platforms [SMB07, WZX06], Ontologies can precisely define the

semantics of components as well as the types of relations and communication

between software components [HAM04, MERM03, LINK6]. Consequently,

ontologies are used to enable a basis for designing and developing interoperable

software components in practice.

24

www.manaraa.com

2.4.4 Software Reliability

Software reliability is probability of failure free operation of a computer

program in a specified environment for a specified time [FH97, LEN95],

Software reliability has been discussed, in a number of studies on software

reliability evaluation focusing on post-software development that

includes reliability modelling, reliability estimation and

tools development [LGS99, MIZ98, SHA95]. Reliability evaluation taking place

prior to software development is attracting a growing attention among software

architects and reliability experts. This issue tackles by introducing an ontology-

based approach. This approach is characterized with integration of software

reliability engineering and software architecture

design [GHJ+95, LEN95, SZY98]. In particular, this approach suggests software

architecture design as the first phase of evaluating reliability in the development

of software systems [VRM+99], However, reliability can be accomplished at

requirements analysis phase.

2.4.5 Software Security

Security analysis and design involves the identification of security

attributes and the design of solutions that address these attributes in an efficient

and effective manner [MGM03]. Effective software security control has been

emphasized mainly to ontology based projects due to its expediency, flexibility

and comprehensibility. Consequently, it needs methodology of improving the

current posture of project security while developing these projects with various

perspectives [Sllla, Slllb, Sllld], It attempts to provide a range of benefits

related to ontology based projects. It is observed that these benefits may incur

different unvisualized states and for ensnaring these states, ontology based

software projects thereby indulge with the instinct for security attributes.

Conversely, the involvement of these factors may be horded in

such a way that may render to acquire the security perspective

of ontology based software projects.

25

www.manaraa.com

2.5 Summary

In this chapter, we have highlighted the importance of ontologies in

software development process while presenting a literature survey component of

the thesis. We present ontological engineering in the context of other disciplines

and observe that it enables both ontological engineers and other specialists to

view respective fields from different perspectives. In this view, goals of software

practitioners are covered to consider awareness of such similarities In addition,

these enable to create new ways to build and improve knowledge. Chapter

proceeds with introduction of various software engineering disciplines

information system building, requirement engineering, reuse, reliability and

security. We observe that, ontologies are needed in all software engineering

disciplines to explore entities, attributes and relationships in the relevant world.

Moreover, all disciplines require knowledge that constitutes data

structures, methods, or algorithms.

26

www.manaraa.com

CHAPTER 3

Ontology Driven Information
Systems

3.1 Introduction

The rapid development of new application domains has introduced

important changes to information dissemination and application

processes [KL02]. It has been observed that, contemporary Information Systems

are increasingly distributed and heterogeneous. Consequently, the next generation

of Information Systems ought to solve the semantic heterogeneity to formulate the

information available. Ontology plays an essential role in the construction of

Information System since it allows the establishment of correspondences and

interrelations among the different domains [GUA98, H0098]. In order to develop

a long term oriented and extremely generalized software, Ontology Engineering

(OE) has been practiced in recent years.

Ontology Engineering (OE) presents the paradigm of choice for growing

number of Information Systems, over Object Oriented Software Engineering

(OOSE) approach. OE approach stresses different aspects than OOSE. Ontology

development and Object Oriented software development have their own,

concurrent, intertwined life cycles which have something in common but also

differ in their goals, responsibilities, time horizons etc. [WAR09J. The role of

ontologies is to capture domain knowledge in a generic way and to provide a

commonly agreed upon understanding of a domain. The common vocabulary of

an ontology, defining the meaning of terms and their relations, is usually

organized in taxonomy and contains modelling primitives [GFC03]. In addition,

Ontology is well known as description of declaration. While building a new

ontology, analysis phase serves for initiating overall ontology development

27

www.manaraa.com

process. The ontology domain is conceptualized, the glossary is (further) filled,

enhanced, extended and cross-references are determined in design phase. During

the construction or implementation phase, ontology is translated into a concrete

ontology with the help of programming language [MSOO, GFV96],

In recent scenario, use of procedure oriented approach is discouraged in

software development organizations for developing the Information Systems as

Object Oriented Technology has grappled its importance. During the software

development, it has been observed that the current candidate system is being

intended. Accordingly, resultant software is restricted to a particular application.

Nevertheless, these concepts works effectively on domain oriented software

development projects. However, OE approach will enable the software

practitioners to integrate the concerned information in a seamless and a flexible

manner [SSS+01, SBF98]. Thus, global networking and continuous

development of new application domains involve changes in

information dissemination and application processes.

3.2 Background

In recent years, it has been recognized that the use of ontologies are

advantageous for software engineering. Ontology representations are little known

outside AI research laboratories. In contrast, commercial interest has results in

ideas from object oriented programming community maturing into industry

standards and powerful tools for object oriented analysis design and

implementation. And, this maturing standards and tools can be used for ontology

modelling. Ontology has been known as formally specified models of bodies of

knowledge, defining concepts used to describe a domain and interrelationship that

holds between them [FGJ97, SRK+97]. The object oriented paradigm in software

engineering, influencing all effort in information science and is one of the main

objectives of the software engineering discipline. It has been observed that,

Object Oriented Modelling (OOM) is different from other modelling techniques

because it has merged the concept of variables and abstract data types. This

28

www.manaraa.com

abstract variable type termed as an Object. Objects have identity, state, and

behavior and object models built out of systems of these objects. To make it

easier, there exist concepts of type such as inheritance, association, and class.

OOM focuses on identity and behavior and therefore, is completely different from

the relational model’s focus on information [JAC92], However, Ontology is well

known as description of declaration and abstract way to define the domain

information. It involved with vocabulary and constrains the use of data widely in

software development, which requires a significant degree of structure. Also,

ontology, allow expressing the similarity of concept in OOM [SMJ02]. Thus,

ontologies have been come up as an important tool for coping with very great,

compound and various sources of information [GF95, GUA04], Now, we

describe information systems, Object Oriented SDLC and Ontology

Development Life Cycle in this section.

3.2.1 Information Systems

An information system is any combination of information technology and

people's activities that support operations, management and decision making. In a

very broad sense, the term information system is frequently used to refer to the

interaction between people, processes, data and technology. These are mainly

classified into Transaction Processing System (TPS), Management Information

System (MIS), Office Automation System (OAS), Decision Support System

(DSS) and Expert System (ES) [LINK1].

Transaction Processing System (TPS) collects, stores, modifies, and

retrieves the transactions of an organization. A transaction is an event that

generates or modifies data that is eventually stored in an information system.

Examples of such system include Airline Reservation System

Payroll Processing System, Transport Ticket Reservation System, and Purchase

Order Entry System etc. However, MIS provides information essential to manage

organizations efficiently and effectively. MIS encompasses three primary

components such as technology, people (individuals, groups, or organizations),

and data/information. Sales Order Entry, Hotel Reservations and Payroll System

29

www.manaraa.com

etc. include the examples of MIS. Next, DSS has been defined as a computer-

based information system that supports business or organizational decision

making activities. A properly designed DSS is an interactive software-based

system intended to help decision makers, compile useful information from a

combination of raw data, documents, and personal knowledge, or business models

to identify and solve problems and make decisions. Generally, DSSs are

interactive, flexible, and adaptable information systems, developed to support the

solution of non-structured management problems for improved decision making.

For example, medical decision making often involves making a diagnosis and

selecting an appropriate treatment.

Now, OAS refers to the varied computer software used to digitally create,

collect, store, manipulate, and relay office information needed for accomplishing

basic tasks. Office automation helps in optimizing or automating existing office

procedures. Raw data storage, electronic transfer, and the management of

electronic business information comprise the basic activities of an office

automation system. Lastly, ES helps to guide users to find solutions to

problems and is useful in diagnosing, monitoring, selecting,

designing, predicting and training.

3.2.2 Object Oriented SDLC (OOSDLC)

In the course of object-oriented software development, various models

such as Requirement, Analysis, Design and Implementation have been

constructed at the different stages as shown in Figure 3.1. This modelling

practice is helpful because of seamless transitions between the models and simple

traceability maintenance [JCJ+07], Requirement Model is confined at the

functional requirements. It is comprised of a Use Case Model and Object Model.

Use Case Model constitutes actors and use cases, supported by an intuitive

domain and interface descriptions. Actor indicates interaction with the system and

use case specifies a flow that a specific actor invokes in the system. Then, Object

Model provides a conceptual, easy to understand picture of the system.

30

www.manaraa.com

Figure 3.1: Object Oriented Software Development Life Cycle

31

www.manaraa.com

Next, Analysis Model aims to present a robust and changeable object

structure. During this phase Requirement Model is structured into Analysis

Model. Three types of objects namely Entity objects, Interface objects and

Control objects are used. The use case functionalities which are directly

dependent on the system’s environments are handled in Interface objects whereas

tasks dealing with the storage and handling of information are placed in the Entity

objects. Finally, functionalities specific to one or few use cases and not placed in

any of the other objects are placed in Control objects. Consequently, Design

Model is intended to adopt and refine the object structure to current

implementation environment. This model has been regarded as a formalization of

Analysis Model. It defines the structure and hierarchy, interfaces, rules for

commitment and block is used to represent design object. One block implements

one analysis object. Lastly, Implementation Model helps to implement the system.

It is evident that the base for system implementation is Design Model [JAC92].

Now, we present examples of MIS, TPS and ES that have been developed using

object oriented software engineering concepts.

Hospital Management System illustrates the example of MIS. The system

has several types of functions represented through use cases. These use cases

associated with different possible actors as shown in Figure 3.2. Figure 3.3 shows

Object Model demonstrating its role in formulation of use case descriptions of the

use cases. Figure 3.4 illustrates the Analysis Model that has eight interface objects

namely Staff or Nurse Panel, Doctor Panel, Receptionist Panel, Information

Panel, Patient Panel, Record System Panel, Expense Panel, and Income Panel to

communicate with system. Entity objects such as Expenditure and Income inherit

Finance Manager and five control objects specifically Appointment Fixer, Receipt

generator, Login, Salary Manager, Bill issue to unite the other objects to get

overall system functionality. Figure 3.5 shows Design Model using the blocks as

an abstraction of the actual implementation. Each block corresponds to every

object of Analysis Model showing their functionalities. Figure 3.6 shows the

Implementation model (Class diagram) that implements each block of Design

Model into corresponding classes.

32

www.manaraa.com

33

Fi
gu

re
 3

.2
: U

se
 C

as
e M

od
el

 o
f H

os
pi

ta
l M

an
ag

em
en

t S
ys

te
m

www.manaraa.com

C
on

su
lta

nt
In

-h
ou

se

In
fo

rm
at

io
n

34

Fi
gu

re
 3

.3
: O

bj
ec

t M
od

el
 o

f H
os

pi
ta

l M
an

ag
em

en
t S

ys
te

m

www.manaraa.com

Fi
gu

re
 3

.4
: A

na
ly

sis
 M

od
el

 o
f H

os
pi

ta
l M

an
ag

em
en

t S
ys

te
m

ill
s

its

Fi
na

nc
e

E
xp

en
di

tu
re

R
ec

or
d

Sy
st

em
 P

an
el

Pa
tie

nt
 P

an
el

R
ec

ep
tio

ni
st

Pa
ne

l

D
oc

to
r

Pa
ne

l

35

www.manaraa.com

fafhfrjjiinn Patient Paid
Pad

Figure 3.5: Design Model of Hospital Management System

36

www.manaraa.com

Figure 3.6: Implementation Model of Hospital Management System

37

www.manaraa.com

Next, Railway Reservation System exemplifies TPS. It has several

different types of functions represented through use cases like Request for

availability which includes Date, Required train and Reservation type, Request

form. Fill form, Submit form, Accept form, Issue ticket. Make a reservation.

Make cancellation and Update data base associated with different possible actors.

These actors are Traveler, Booking Clerk and Reservation Data base working in a

system as shown in Figure 3.7. Figure 3.8 shows Object Model showing its role in

formulation of use case descriptions of the use cases. In addition, Analysis Model

has four interface objects such as Traveler Panel, Booking Panel, Reservation

database Panel and Reservation Panel to provide communication of user with the

system. An entity object called Train Information is provided since it sustains in a

system till the traveler is registered. Six control objects such as Availability

Checker, Ticket issuer, Database updater, Ticket canceller, Amount checker and

amount checker has been included to get overall system functionality

as shown in Figure 3.9. Lastly, Figure 3.10 illustrates Design Model using the

blocks whereas Figure 3.11 presents Implementation Model for

the railway reservation system.

Now% Recycling Machine System demonstrates the ES. Use Case Model

of this system has been comprised of use cases such as Returning Item. Generate

Daily Report and Change Item associated with Customer and Operator actors as

shown in Figure 3.12. Whereas, Figure 3.13 shows Object Model that includes

objects such as Deposit item classified as Can, Bottle or Crate. Then, Figure 3.14

depicts Analysis Model that has four interface objects such as Alarm device,

Customer Panel, Operator Panel and Receipt Printer to provide statement of user

with the system. Subsequently, entity objects such as Receipt basis and Deposit

item has been involved since these remain constant till system w'orks. In addition,

three control Objects such as Alarmist, Deposit Item Receiver and Report

Generator has been included to unite system functionality. Finally, Figure 3.15

shows the Design Model using blocks and Figure 3.16 confirms the

Implementation Model for Recycling Machine System.

38

www.manaraa.com

Fi
gu

re
 3

.7
: U

se
 C

as
e M

od
el

 o
f R

ai
lw

ay
 R

es
er

va
tio

n
Sy

st
em

39

www.manaraa.com

Fi
gu

re
 3

.8
: O

bj
ec

t M
od

el
 o

f R
ai

lw
ay

 R
es

er
va

tio
n

Sy
st

em

R
es

er
va

tio
n

40

www.manaraa.com

Fi
gu

re
 3

.9
: A

na
ly

sis
 M

od
el

 o
f R

ai
lw

ay
 R

es
er

va
tio

n
Sy

st
em

A
va

ila
bi

lit
y

lu
fb

 m
sa

tio
 ti

C
h.

ec
k.

er

D
at

ab
as

e
up

da
te

r

41

www.manaraa.com

Fi
gu

re
 3

.1
0:

 D
es

ig
n

M
od

el
 o

f R
ai

lw
ay

 R
es

er
va

tio
n

Sy
st

em

uotism
jqinx

C
he

ck
er

42

www.manaraa.com

Figure 3.11: Implementation Model of Railway Reservation System

43

www.manaraa.com

D
ep

os
it

ite
m

R
et

ur
ne

d
ite

m
s

R
ec

ei
ot

Fi
gu

re
 3

.1
3:

 O
bj

ec
t M

od
el

 o
f R

ec
yc

lin
g

M
ac

hi
ne

 S
ys

te
m

C
us

to
m

er

C
an

B

ot
tle

C

ra
te

Fi
gu

re
 3

.1
2:

 U
se

 C
as

e M
od

el
 o

f R
ec

yc
lin

g
M

ac
hi

ne
 S

ys
te

m

44

www.manaraa.com

Fi
gu

re
 3

.1
4:

 A
na

ly
si

s M
od

el
 o

f R
ec

yc
lin

g
M

ac
hi

ne
 S

ys
te

m

A
la

an
 D

ev
ic

e

45

www.manaraa.com

Fi
gu

re
 3

.1
5:

 D
es

ig
n

M
od

el
 o

f R
ec

yc
lin

g
M

ac
hi

ne
 S

ys
te

m

A
la

rm
 D

ev
ic

e

46

www.manaraa.com

Figure 3.16: Implementation Model of Recycling Machine System

47

www.manaraa.com

3.2.3 Ontology Development Life Cycle (ODLC)

Ontology Development Life Cycle (ODLC) refers to the activities that

have to be performed when building ontologies. These have been classified into

three categories such as Ontology Management, Ontology Development and

Ontology Support Activities as shown in Figure 3.17. Ontology Management

activities include scheduling, control and quality assurance. Scheduling activity

identifies the tasks to be performed, arrangement, time and resources needed for

completion. However, control activity identifies scheduled tasks to be performed

in anticipated slot. Finally, quality assurance activity assures that the quality of

each and every product or output is satisfactory.

Ontology Development activities has been grouped into pre-development,

development and post-development activities. During pre-development, an

environment study identifies the problem to be solved. In development,

specification, conceptualization, formalization and implementation activities have

been constituted. Firstly, specification activity states intended uses and end users

of ontology. Then, conceptualization activity structures domain knowledge and

formalization activity transforms conceptual model into formal or semi

computable model. However, implementation activity builds computable model in

an ontology language. Lastly, in post-development, maintenance

activity updates and corrects ontology if needed and evaluation

activity manages ontology changes.

Ontology Support activities composed of knowledge acquisition,

evaluation, integration, alignment, documentation and configuration management.

The goal of knowledge acquisition activity is to acquire knowledge from experts

in a given domain. Evaluation activity makes technical judgment of associated

environments. An integration activity is required, when building new ontology by

reusing other ontologies already available. Whereas, merging activity unify

concepts, terminology, definitions, constraints etc., from source ontologies.

Documentation activity provides details of completed stages and configuration

management activity records all the versions of documentation [UG96, FGJ97],

48

www.manaraa.com

Management activities

Specification > ConceptnaHzati Formalization Implementation ♦ Maintenance
on

Support activities

Figure 3.17: Ontology Development Life Cycle

49

www.manaraa.com

3.3 Mapping OOSDLC and ODLC in Information Systems

It has been studied that software quality and productivity can be improved

by the use OOSDLC. It can automate several tasks of the software development

process and making easier to control it. But, OOSDLC enables developers to

build domain specific systems only. To build a generalized system, explicit

conceptualization of the domain is essential. Ontologies involve the specification

of concepts and relations that exist in the domain, definitions, properties and

constraints. Consequently, we have attempted phase wise mapping of OOLC and

OOSDLC with the help of common elements. Mapping of OOSDLC and OOLC

curtails the constraints of domain specific systems during the development that

resulted into a generalized development environment.

3.3.1 Ontology Driven Information System (ODIS)

Ontology Driven Information System can be developed using phased

development life cycle. It comprises of Ontolysis, Ontodesign and Ontocontatior

as shown in Figure 3.18. Firstly, Ontolysis concerns with the purpose

identification and requirements specification to clearly identify domair

conceptualization. A model using a graphical language, with a dictionary of terms

is used to facilitate the communication with domain experts. Subsequently

Ontodesign consists of ontology formalization, integration of existing ontologies

and ontology evaluation. Ontology formalization aims to explicitly represent tht

conceptualization captured in a formal language. Then, to seize establishec

conceptualizations, it is essential to integrate the current ontology with existing

ones. On the other hand, ontology evaluation checks for the accomplishment o;

requirements specification. Lastly, the ontology development has beer

documented, including purposes and adopted design criteria in Ontocontation

Thus, one key to promote the advantages of ontologies is in a generality

perspective across OOSDLC.

50

www.manaraa.com

Figure 3.18: Ontology Driven Information System (GDIS) Development

51

www.manaraa.com

3.3.2 ODIS Development

In ODIS development life cycle, Ontolysis implies an investigation of

existing ontologies through the approach of developing a Generalized Use Case

Model for a system as shown in Figure 3.19. There can be three actors possible

namely User, Operator and Administrator. User points to information regarding

the end users and Operator represents the information about the workers.

However, Administrator signifies the information concerning overall controller

for a system. Use cases represent generalized functionalities associated with a

system such as System access. Concerned information checking and System

transaction specification. System access specification keeps the information

regarding all the security rights on the hierarchical level. Next, Concerned

information checking specification provides all the related supervisory

information and System transaction specification confers all the possible

transactions that can be carried out for a system. In addition, transfer of codified

knowledge for the application domain has been established with Generalized

Object Model. Figure 3.20 depicts Generalized Object Model that constitutes

objects, logical attributes, static instance associations (explicitly

the static references between these objects) and possible operations

to manipulate the objects.

Next, Ontodesign builds on ontological definitions and commitments for

the application domain with Generalized Design Model. Three types of objects

namely Interface objects. Entity objects and Control objects has been

encapsulated. Also, concept of block as design objects defines the structure and

hierarchy, interfaces, rules for commitment as shown in Figure 3.21.

Lastly, Ontocontation involves feedback of the application results and

experiences to the ontology developers/maintainers and have to be incorporated

there in order to keep the ontology a proactive component. It is engrossed with

defining the classes in the ontology then arranging the classes in

a taxonomic hierarchy, followed by defining slots and filling in the

values for slots for instances.

52

www.manaraa.com

O
pe

ra
to

r

A
dm

in
is

tr
at

or

U
se

r

Fi
gu

re
 3

.1
9:

 G
en

er
al

iz
ed

 U
se

 c
as

e M
od

el
 o

f O
D

IS

\T
4

r"
 I

53

ca
se

www.manaraa.com

KIIOIlKJiHln

sajiiquun p;9or]

f
 on fqo

D
yn

am
ic

 in
sta

nc
e

I
• as
so

ci
at

io
n

O
pe

ra
tio

ns

In
he

rit
an

ce

St
at

ic
 in

st
an

ce

as
so

ci
at

io
n

O
bj

 n
ol

Lo
gi

ca
l a

ttr
ib

ut
es

(I 1 I Fi
gu

re
 3

.2
0:

 G
en

er
al

iz
ed

 O
bj

ec
t M

od
el

 o
f G

D
IS

54

www.manaraa.com

Control objectl

Figure 3.21: Generalized Design Model of ODIS

55

www.manaraa.com

3.4 Results

It has been observed that an Information System can be build using

ontological approach. Since, ontology profitably drives all aspects of an

Information System thereby it can be Ontology Driven Information System

(■ODIS). Also, it enables the developer to reuse and share application domain

knowledge using a common vocabulary across heterogeneous software

applications. Let us take Hospital Management System using ODIS development

life cycle. While developing Hospital Management System using OOSDLC, use

cases and actors developed can be derived from Generalized Use Case Model

such as System access specification use case signifies Login, Admission and Add,

Delete or Edit Doctor or Staff. Next, Concerned information checking

specification includes Patient Information, Ward wise Bed Status, Bed Allotment

and Other Privileges. Lastly, System transaction specification comprised of

Fix Doctor or Test Appointment, Prescribe Tests, Admission or

Discharge Reports and Draw Salary.

On the other hand, Staff or Nurse, Doctors and patients constitutes User

actor whereas Receptionist, Information keeper and Daily Record keeper indicates

in Operator actor. In addition, Finance manager works as an Administrator actor.

Now, objects built in Object Model of OOSDLC can be obtained from

Generalized Object Model. Employee, Patient, Expenditure, Income Receipt,

Daily Record keeper, Information keeper and Finance Manager confers Objects.

However, Update indicates the Operation and Salary points to Static instance

association. Moreover, Receives specifies Dynamic instance association. In the

same way, Generalized Design Model and Ontocontation instigate

Implementation Model of OOSDLC respectively.

Thus, we can develop aforesaid kinds of generalized models for each and

every information system.

56

www.manaraa.com

3.5 Summary

In this chapter, we have attempted to develop ontology for different

Information Systems to ensure the generality. In this view, we have presented the

Object Oriented concepts with related literature survey. We have mainly focus on

development phases of OOSDLC and ODLC in details. In addition, we have

studied various types of Information Systems that have been implemented in

industry. We have attempted to develop an illustration of TPS, MIS and ES using

OOSDLC and followed by ODLC. In next section, we have highlighted the

mapping of OOSDLC phases and with various phases of ODLC in Information

Systems. This mapping divulged ODIS. Our investigations reveled that all the

phases of OOSDLC can be mapped with phases of ODLC to form corresponding

generalized models. It is interesting to note that by using these generalized models

lessen the system development efforts at each phase. It is useful in terms of

knowledge transfer from project to project in a certain application domain and

from one development cycle of a project to the next. At last, we have highlighted

the results of mapping of phases of OODSDLC with the phases of ODLC.

57

www.manaraa.com

CHAPTER 4

Ontology Aided RE and Process
Models

4.1 Introduction

Requirements Engineering (RE) phase of a software project is vital to its

successful completion. Consequently, the ability to identify problems and

suggestions for improvements in RE process opens up significant potential for

increasing the success of software projects. RE process is often depicted with the

help of Linear Sequential, Linear Iterative, Iterative and Spiral Requirements

Engineering Process (REP) models. These conventional REP models have been

successful for the confining of knowledge strenuous environment. However, to

deal with increasing competencies of software project, the software systems

demand knowledge intensive RE process. Also, RE process has been required to

promote the cohesiveness among the information gathered and to provide a

coherent view between the stakeholders. Therefore, we have encapsulated the

ontology for invention of generalized requirement set that may cater various

applications from different domains.

By adopting ontology, requirements knowledge has been represented as

ontology concepts and therefore become more definite, complete, consistent and

convenient to share and reuse [ZZY+07, JINGO, KS06]. Based on the above

decree, it appears potential to consider and evaluate elementary shift in the way

RE has been practiced. To accomplish this shift, a possible orientation towards

knowledge-driven RE by identifying shortcomings of current process-driven RE

approaches has been considered. Furthermore, we have emphasized on

categorization of requirements depending on relevant changes of knowledge to

bring about knowledge-driven RE. Since, it has been generally accepted that

domain knowledge play a very important role in RE after long-term of

58

www.manaraa.com

requirements practice. Besides, guided by the domain knowledge and requirement

type, domain users can present the requirements more effectively, and

requirements analysts can understand the requirements more accurately and

construct correct requirements model. Accordingly, we suggest Ontology Aided

Requirements Engineering (OntoAidedRE) model in this chapter that reconcile

and unify domain-specific concepts, approaches and knowledge. OntoAidedRE

provides an unambiguous and precise terminology that can jointly explicable and

functional across various realms. It formally expresses primitive requirements

through top-down refinement of generalized requirements, so

that it becomes easier to detect and handle incompleteness and

inconsistency of any domain requirements.

4.2 Background

With the advances in software development, the role of RE is to establish

engineering principles amenable to analysis, design and implementation.

Traditional requirements engineering is an iterative process and continues

iteratively until the project is complete. This process involves the activities such

as defining the terms in the domain of discourse, stating, clarifying and agreeing

on assumptions and constraints, discussing and negotiating the needs and the

objectives for a software development [VAN01, VAN03]. There exist

conventional REP models to define these activities. In addition, these models are

conflicting in nature, ranging from linear and incremental, recurring and

iterative in structure [HKW+, LPR93].

Ontology refers to the basic existential pool of knowledge in the world of

interest to the discipline [NMOO, GRU92, EW05], In order to elicit system

requirements correctly and unambiguously, researchers in RE community have

been studying and developing a number of ontology based approaches. Many of

them adopt ontology to describe static knowledge for all domains [JMF08]. All

these approaches suggest that the ontology is necessary to express domain

knowledge for the sake of knowledge based elicitation and reuse. But, variety of

59

www.manaraa.com

the knowledge existing in application domain makes it difficult for generalized

and reusable requirement elicitation. To resolve this problem ontology should not

act merely as a static knowledge base. But, ontology must be used as a substantial

assurance in aiding the elicitation and elaboration of requirements. By introducing

dynamic knowledge such as requirement type, requirement elicitation would

become an inducible process and more knowledge be reused. In this view, explicit

treatment of knowledge for emphasizing on the category of requirement in

RE practices suggests a fundamental shift in the domain oriented

underpinnings of RE process [BL03, SG05, SM98].

4.2.1 Requirement Engineering (RE)

Requirement Engineering (RE) is the branch of software engineering

concerned with the real world goals for functions and constraints on the software

systems [VANOSb], Requirements are often specified, validated and documented

across different domains, disciplines and dislocation of the respective

stakeholders and authors. Also, requirements reuse and designing of solutions

obtained in a hysterical way is due to the lack of knowledge intensive

environment. Besides, members of the same domain may use different

terminology, and often there exists no common perceptive of the terms or

concepts used and consequently problems have been appeared [KOG+08].

Therefore, many requirement engineers have been facing numerous challenges

when developing software requirement specifications for highly complex, long-

lead projects and services of various domains [VLOO, LV02].

Currently, requirements engineers must understand the different types and

levels of requirements for high-quality RE. It requires an interdisciplinary-

approach that considers the needs of multiple stakeholder groups. It also requires

expertise in various RE activities including requirements elicitation, requirements

analysis and negotiation, requirements documentation and validation,

requirements management and configuration management [MMJ+04],

60

www.manaraa.com

Requirements Elicitation

The goal of requirement elicitation is to gather raw requirements. It

involves technical staff working with customers to find out about the

application domain, the services that the system should provide and

the system’s operational constraints.

Requirements Analysis and Negotiation

Requirements analysis and negotiation is an activity that aims to discover

problems and conflicts with the requirements and reach agreement on changes to

satisfy all system stakeholders or people that are affected by the proposed system.

The final purpose is to reach a common understanding of the requirements

between all project participants.

Requirements Documentation and Validation

During this activity, the defined requirements have been written down in a

software requirements specification document and validated against

criteria of correctness, completeness, consistency, verifiability,

un-ambiguity and traceability etc.

Requirements Management

Requirements management consists of managing changes of requirements

specifically keeping requirements consistent. It is achieved by ensuring

identification of interdependencies between requirements, other

requirements and artifacts.

Configuration Management

Configuration management is a process of identifying and defining

components in a system. It controls the release and change throughout the

lifecycle, recording and reporting the status of components and change requests.

In addition, it deals with verification of completeness and correctness of systems

components. Requirements management can be seen as integrated part

of change and configuration management.

61

www.manaraa.com

4.2.2 Parameters of Study

The project attributes such as project type, project size, project team,

project effort, project quality, project prioritized element and project key element

play a very significant role during project development. Managing these project

attributes will add a new dimension to requirement engineering process thereby

contributing to project success [SPL06], Consequently, we define these project

attributes as follows:

Project Type

It defines the statement of work that must be completed during the

development and includes building the product prototype [SPL06]. Project type

illustrates the classification of projects according to acquired distinctiveness such

as operations support, management support and others. Operation support systems

include transaction processing, process control and office automation systems.

However, management support system constitute management information

and decision support system whereas others including expert systems

as described in Chapter 3.

Project Size

Project size determines the scalability of methodology. There exist three

most important factors such as estimated effort, experience level of project

manager and complexity. These are used to categorize project size into small,

medium and large. Project size in terms of effort hours is defined as 1 to 250

effort hours fall in small project size. Subsequently, project having 251 to 5000

effort hours signifies medium project size and projects over 5000 effort hours

implies large project size. Then, experience level of the project manager suggests

that an experienced manager manages larger projects with at least up to a higher

effort threshold. Consequently, project size becomes medium or small. On the

other hand, an inexperienced project manager manages a 2000 hours project in a

way of large project size. Moreover, complexity of a project

indicates large project size for 1000 hours project that is extremely

62

www.manaraa.com

critical to the business whereas 5000 hour project becomes small as two or more

similar projects managed before by the project manager [LINK2],

Project Team

Project team is a group of individuals with appropriate and complementary

professional, technical or specialist skills that aims to provide technical expertise

in support of project objectives. It also contributes to understand the use project

management standards specified in a project and maintain the project

documentation in line with the project quality plan. It can consist of human

resources within one functional organization, or it can consist of members from

many different functional organizations such as project analyst,

Change Control Board member, client project manager, project designer,

project manager or team leader [LINKS].

Project Quality

Project quality is the totality of features and characteristics of a product or

service that bear on its ability to satisfy stated or implied requirements. There

exist several indicators used as a range of measuring the project quality, or the

perception of quality [STA08]. Table 4.1 shows Engagement Measures (EM) that

specifies internal customer involvement in key project activities. Next, Planned

vs. Actual Cumulative Review Count (P vs. A CRC) illustrates ratio of expected

to actual project activity count. Lastly, Assessment Measures (AM) points to

customer satisfaction surveys and stakeholder expectations evaluation [STA08].

For example, in online examination system there exist great involvement of

faculties i.e. customer in all related activities such as setup examination, subject,

code and criteria etc. Therefore, the value of EM becomes high. Since, ratio of

expected to actual project activity count calculated as 0.5, P vs. A CRC value

turns into low. However, enormous use of online examination system provides

high value of AM. Then, according to Table 4.1 quality status of online

examination system comes in range of 65 to74%.

63

www.manaraa.com

Table 4.1: Project Quality Indicators

EM Pvs.A CRC AM Quality
Status

High High High -100%
High High Med 75-99%
High High Low 65-74%
High Med High 75-99%
High Med Med 51-64%
High Med Low 41-49%
High Low High 65-74%
High Low Med 41-49%
High Low Low 31-39%
Med High High 75-99%
Med High Med 51-64%
Med High Low 41-49%
Med Med High 51-64%
Med Med Med -50%
Med Med Low -40%
Med Low High 41-49%
Med Low Med -40%
Med Low Low 26-30%
Low High High 65-74%
Low High Med 41-49%
Low High Low 31-39%
Low Med High 41-49%
Low Med Med -40%
Low Med Low 26-30%
Low Low High 31-39%
Low Low Med 26-30%
Low Low Low 0-25%

64

www.manaraa.com

Project Prioritized Element

Project prioritized element measures the project characteristics on three

aspects viz. cost effectiveness, time effectiveness and project functionality. It

begins with the project cost element comprised of acquisition cost and the

operation cost. Then, it describes the project time element which includes overall

time required to complete the project. Finally, project functionality is

characterized by usability, serviceability and compatibility as well as the modes of

operation. Different information systems emphasize on different priority elements

according to the types such as TPS, OAS, PCS, DSS and ES. For example, while

automating hotel management system, cost and functionality grows to be priority

elements than time element. However, for power utility system time and

functionality elements dominate than cost.

Project Key Element

Project key element is a well-defined knowledge artifact for every project

that expresses the value of product and its competitive benefit in terms of

generality. It provides the guidelines to project team for knowledge driven RE

process. Generally, conventional REP models used to develop requirement

specification set for domain specific systems such as TPS, OAS, PCS, DSS and

ES. Eventually, these models undersupplied for knowledge driven RE process.

4.2.3 Conventional REP Models

Requirement engineering process is often depicted with a linear,

incremental, cyclical and iterative model. Within these models, common RE

activities such as elicitation, analysis and negotiation to documentation and

validation have been combined under different labels, which follow varied

organization formats [HKW+04], We have defined these activities for different

models as follow's:

65

www.manaraa.com

Linear REP Model

Linear REP model constitutes five activities namely; concept, problem

analysis, feasibility and choice of options, analysis and modelling and

requirement documentation as shown in Figure 4.1. Concept triggers RE process

and defined for an improvement or enhancement of the product. In many cases, it

triggers the organizational level RE process. Since, the concept moves into a

specific project it triggers RE process at project level or development process

level. During problem analysis phase, an understanding of the nature of problem

is developed. It helps requirements engineers to identify set of alternative

solutions by generating an appropriate representation of the problem. However,

feasibility and choice of options phase is concerned with evaluating the costs and

benefits of alternative solutions and negotiations. Subsequently, detailed analysis

and modelling phase deals with a more detailed analysis of the requirements.

Once this process is finished, requirements specification document can be

completed. In addition, validation process takes place at the end of each phase in

this model. Being a simple model, it is mostly used for small projects with some

less amount of complexity. But, it is observed that it is not appropriate for

large projects to get requirements.

Linear Iterative REP Model

Linear iterative REP model starts with generation of initial requirements

statements at requirement elicitation phase as illustrated in Figure 4.2. These

statements based on user needs, domain information and existing system

information analysis. Requirements analysis phase finds problems in the initial

requirements statements generated in requirements elicitation phase with the help

of completeness checking. In completeness checking the incomplete requirements

are pinpointed. The agreement phase is the process of discussing the issues and

problems pointed out in the requirements analysis phase and finding some

agreement with which all of the stakeholders can live. Eventually, solutions are

identified and issues are resolved to the satisfaction of the parties involved. In

many cases, it is possible that information available for agreement is sufficient or

66

www.manaraa.com

Figure 4.1: Linear REP Model

Requirements Requirements Requirements Requirements
Elicitation Analysis &

-»
documentation validation

negotiation

User needs Requirements
Domain documentation

information
Existing system

information System
Regulation. specifications

Standard

Agreed
Requirements

Figure 4.2: Linear Iterative REP Model

67

www.manaraa.com

some new requirements emerge. In such cases, the unresolved issues or new

requirements are forwarded again to next iteration. This iteration continues until

the stakeholders are agreed and the final system specification is achieved. At the

end of this phase, final requirements statements generated and forwarded to the

validation phase for validation and discussion. During validation phase validation

checklists are discussed, and agreed actions are performed. Consequently, this

model is useful for the system where the specifications should be

pin point accurate and validated multiple numbers of times

through the potential stakeholders.

Iterative REP Model

Iterative REP Model is used to perform RE in multiple iterations and

hence is better for software that is launched versions by versions. It is comprised

of three phases namely; elicitation, specification and validations as shown in

Figure 4.3. In this model, elicitation is considered as an ongoing process. It

provides the knowledge to other processes such as specification and validation.

The purpose of requirements elicitation is to gain of knowledge relevant to the

problem that can be used to produce formal specifications. Requirements

specification is the central process that controls both the elicitation and validation

processes. During specification it becomes apparent that more information about

the problem is required. This triggers the process of elicitation which in turn

supplies the needed information. Conversely, some change in the problem domain

(e.g. change in some assumption, made about the domain) triggers a change in the

specifications. Accordingly, elicitation can take place during the specification

process. Similar interactions appear between specification and validation such as

completion of some part of the specifications can cause the need for validation.

Requirements validation is defined as the process which certifies that the

requirements are consistent with customers' and users’ intents. It is ever present

in all stages of RE. The need for validation is triggered by the acquisition

of new knowledge about the problem domain (elicitation), or by

formulation of requirements (specification).

68

www.manaraa.com

69

www.manaraa.com

Spiral REP Model

In spiral REP model, all different RE activities repeats until a decision is

adopted about acceptability of requirement documents as illustrated in Figure 4.4.

It is performed in spirals. One spiral represents the complete version of the

requirements on the basis of which the system has to be developed. Each spiral is

divided into four quadrants such as specification extraction, discussing and

analyzing requirements, requirements documentations and requirements

validations. It starts with requirement extraction phase that collects information in

requirement development process. In this phase requirements are identified by

consulting with customers, developers and users. While, in discussing and

analyzing requirements phase requirements are studied in regard of necessity,

compatibility, completeness and possibility. During this phase requirements are

analyzed and modeled and possible interference of requirements are omitted by

prioritizing discussions and risks of the issue are identified. Output of this level is

a complete compatible and prioritized set of requirements. The final goal of RE is

to document requirements to be met and purpose of requirements documentation

is making relation between requirements understood by users and

developers. Hence, requirements document describes application extent

as well as under development system.

Requirements document can be considered as a base for controlling

changes and evaluating future products. Validation in requirement engineering is

done for controlling the quality. Requirements validation means confirming that

requirements are complete and well- written and supply needs of customer. This

phase may continue repeating other requirements development phases because of

identified deficiencies, gap between requirements, additional information and

other issues. Implemented software product is validated in software life cycle test

phase on the basis of its requirements. The main characteristic of this model is to

handle the unwanted consequences such as speciation delay and requirements

change etc. which can badly affect the cost schedule and quality of the project.

70

www.manaraa.com

Figure 4.4: Spiral REP Model

71

www.manaraa.com

4.3 Ontology Aided REP Model (OntoAidedRE)

We have proposed OntoAidedRE to transform conventional process

driven requirement engineering. It follows an encrusted approach and intended to

be a generic paradigm that enables knowledge driven requirements engineering.

Ontology is used to strengthen the generality of concepts that depend on types of

requirements for different application domains such as TPS, OAS, PCS, DSS and

ES. The product of applying OntoAidedRE promotes cohesiveness depending on

relevant changes of knowledge. Consequently, a layered structure has been

designed taking into account the inter relationships between different domain

requirement types as shown in Figure 4.5. We have devised four layers namely;

OntoPre Requirements, Ontolnput Requirements, OntoSystem Requirements and

OntoOutput Requirements. Moreover, OntoSystem Requirements comprised of

three sub layers such as OntoSystem Operational Requirements, OntoSystem

Control Requirements and OntoSystem Parameter Requirements. The

comprehensive depiction of these layers is as follows:

OntoPre Requirements

While developing requirements, it has been observed that every system

has statements of fact and assumptions. It defines the expectations of the system

in terms of tasks, objectives, constraints, and measures of effectiveness and

suitability. Hence, this layer is primarily responsible to facilitate user verification

or identification that describes task objective accomplishment by the system.

Consequently, OntoPre Requirements for the candidate system defines system

definition method, system activation method and system defined constraints.

For example, while developing requirements set of TPS, OAS, PCS or

DSS, the first objective is to get into it for further use. Accordingly, we have

included Login-Password or security check services and client registration facility

into OntoPre Requirements. Through these services or facilities, clients get intOo

the system and understand its definition in terms of various functions performed

by it. Besides, it signifies role of system clients and system constraints imposed

on client type such as system administrator has different role than the system user.

72

www.manaraa.com

Ontolnput Requirements

Ontolnput Requirements have been designed to provide in the system with

all initial data required to initiate the system process. It identifies necessary

attributes, characteristics, or excellence of a system to have value and utility to a

user. Accordingly, this layer triggers the initial qualifying terms for the candidate

system to acquire first insights into its usability. Further, it evolves to

conceptualize the problem domain and system-defined or access details such as

stacking of initial data values.

It has been observed that during any OAS development, requirements for

office details, customer records, employee records etc. provides initial inputs or

the system required specifications. Similarly, in PCS requirements for process

source details and in DSS existing standards defined for decision making

constitutes Ontolnput Requirements.

OntoSystem Requirements

OntoSystem Requirements define a role of a software system or its

component. A role is described as a set of actions, behavior, and features.

It explains the type of system job by identifying the necessary action or activity

that must be accomplished. Accordingly, these requirements capture ideas,

perspectives and relationships at various levels of detail such as operational,

parameter and control level. Consequently, the layer is divided into three sub

layers to create a chain of commands consisting of various services or concerns

associated with system and the environment.

OntoSystem Operational Requirements

OntoSystem Operational Requirements depicts operational life cycle

specifically operational distribution or deployment. There exist requirements for

calculations, technical details, data manipulation and processing and other

specific functionality that a system has to accomplish. Hence, this sub layer

covers all the system access procedures such as system modification and updating

competencies which includes creation, addition, deletion, alteration etc.

74

www.manaraa.com

For example in TPS requirements to add, delete or update any transaction

whereas in OAS requirements to add, delete or modify the customer, employee or

office asset details strives for OntoSystem Operational Requirements. In addition,

OntoSystem Operational Requirements for DSS includes requirements to add or

update the present status and compare it with existing standards for

decision making at that instance.

OntoSystem Control Requirements

OntoSystem Control Requirements have been designed to ensure that

system procedures must perform with integrity. It has been observed that control

procedures deals with the integrity of internal process information and the

accuracy provided to system output. Establishing effective control procedures

early in software system helps to create an ethnicity of fair software system

management. As a result, this sub layer is responsible for system control

provision. Also, these control procedures have been catalyzed by pensiveness of

knowledge engineering environment.

It has been observed that, while developing PCS such as Power Utility

System, requirements for the power control must be engrossed to drive the system

successfully. Therefore, OntoSystem Control Requirements have been devised to

define total power units and to shut down the supply in case of sudden failure.

Similarly, while developing TPS such as Online Examination System,

requirements for setting up criteria for examination are

included in OntoSystem Control Requirements.

OntoSystem Parameter Requirements

Presently, requirements have been interactively developed across all

identified functions based on system life cycle factors. Also, these have been

characterized in terms of the degree of certainty, degree of criticality to system

success, and their relationship to other requirements. Thus, OntoSystem

Parameter Requirements have been designed to facilitate the critical system

parameters to accomplish the task. Generally, it is measured in terms of coverage

and suitability or inclination. Hence, the entire system parameterizing procedures

75

www.manaraa.com

are ascertained at this sub layer. It allows confining the

system decision information as intelligent records such as

conventional databases and data dictionaries.

For example, in Online Examination System, OntoSystem Parameter

Requirements have been designed to facilitate requirements for setting up students

for examination. In addition, it aids in setting up paper such as question selection

as per subject, to inform in case of scarcity of question in data dictionaries and to

confirm about paper has set. Then, during Hotel Management System,

OntoSystem Parameter Requirements includes requirements for

membership provision such as to validate the customers for

membership in case meets the defined criteria.

OntoOutput Requirements

Finally, requirements for system eventual presentation such as to view the

system output in the form of reports, transaction receipt, bills or invoices etc. have

been indicated at this layer. Also, OntoOutput Requirements provides addition of

final information and updating it to any kind of communication portal

such as mail services or on mobile phones.

For example, OntoOutput Requirements comprised of requirements for

viewing results in Online Examination System, reports of bill generation in Hotel

management System, consumer invoice in Power Utility System and view status

of customer in credit Ranking System.

4.4 REP Models vs. OntoAidedRE

While reviewing the conventional REP models, it has been observed that

each has certain lacunas over the former hence there exists no ideal REP model.

Linear REP model is a basic model and can be used for simple and small projects

only. This model provides a foundation for other models. But, there exist many

problems such as freezing of requirements, no user feedback, no validation of

requirements and no iterations of RE. However, Linear Iterative REP model

76

www.manaraa.com

solves some of the problems of Linear REP model such as freezing of

requirements and requirements invalidation. But, there also exist some problems

associated with Linear Iterative REP model such as it has no provision for reverse

engineering. Conversely, Iterative and Spiral REP models suggest the user and

domain information feedback in case of new iteration in the product.

The new iteration is called a version but still no methodology has been

set to manage the project [HKW+04],

Nevertheless, the problems with aforementioned models can be minimized

by using inter relationships between different domains. Also, the other main

element for requirements elicitation in RE is the use of requirement type.

OntoAidedRE model bestowed engineers with such broad-spectrum requirement

specifications. It transforms conventional RE with complementary semantics in a

unifying ontological engineering process. Thus, OntoAidedRE model gathered the

information using a uniform representation scheme that promotes cohesiveness

between the requirement specifications set generated from different applications

and creates a shared understanding from multiple dimensions. Also, to enable

participation from diverse stakeholders, this layered approach is supported with

ontological engineering process that provides rich modelling constructs with

easily understandable semantics. RE for various information systems from various

domains such as TPS, PCS, OAS and DSS have been practiced in this section to

verify competence of OntoAidedRE over conventional REP models.

4.4.1 Linear REP Model vs. OntoAidedRE

As discussed earlier. Linear REP model consists of five activities namely;

concept, problem analysis, feasibility and choice of options, analysis and

modelling and requirement documentation. Being a simple model, it is mostly

used for small projects with some less amount of complexity. Accordingly, we

suggest Online Examination System as an example of TPS for practicing RE

using Linear REP model. RE process starts with concept phase that recommend

creative, critical teaching and learning to help students to cope with the

information age. Then, problem analysis phase offers a dynamic elucidation that

77

www.manaraa.com

saves time to prepare examination papers, evaluate the examination automatically

and paperless. Subsequently, detailed analysis enables development of

requirement specifications such as requirement to set up exam, set up subject and

subject code, set up students, manages teachers and view results. Thus,

requirement document completes with aforesaid requirements and during

validation phase requirement change transpire such as set up exam criteria. But,

Linear REP model lacks to seize this requirement change. To overcome this

problem, we use OntoAidedRE model for requirement specifications

development as shown in Table 4.2.

Requirement Engineering (RE) using OntoAidedRE starts with developing

OntoPre Requirements. It indicates requirement for Login to authenticate the user

role such as administrator, teacher and student. Next, requirements to setup exam,

set up subject and subject code constitutes Ontolnput Requirements. Then,

OntoSystem Operational Requirements signify requirements to register, edit and

delete teacher, student or questions. However, OntoSystem Parameter

Requirements cover requirements to setup student for examination and setup

paper. Now, OntoSystem Control Requirements overcome the requirement change

problem of Linear REP model that is to consider requirements to set up exam

criteria. Lastly, requirement to view results connote by OntoOutput Requirements.

4.4.2 Linear Iterative REP Model vs. OntoAidedRE

As presented previously, Linear Iterative REP model comprised of five

phases namely; requirements elicitation, requirements analysis, requirements

agreement, requirements documentation and requirements validation. This model

is useful for the system for which specifications should be pin point accurate and

be validated multiple numbers of times through the potential stakeholders.

Consequently, we consider Power Utility System as an example of PCS to

establish requirements set with the help of Linear Iterative REP model. It begins

with requirements elicitation phase to generate initial requirements such as

requirements to monitor the work processes. Next, requirements analysis phase

finds the problem in the requirements generated at elicitation phase. These

78

www.manaraa.com

Table 4.2: Online Examination System using OntoAidedRE

S. No. Layer Name Requirement
Specifications

Description

1 OntoPre-
requirements

Login To authenticate the examination
administrator, teacher or
student.

2 Ontolnput
Requirements

Setup Exam To register name of examination

Setup Subject To register name of a subject

Setup Exam
Code

To link name of a subject and
name of an exam

3 a Onto System
Operational

Requirements

Register/ Edit/
Delete

Teacher,
Student and

Question

To register, edit and delete the
teacher and student information/
profile and questions

3b Onto System
Control

Requirements

Setup Criteria
Examination

To setup the criteria for
examination papers, the number
of questions to set and its
duration

3 c OntoSystem
Parameter

Requirements

Setup student
for

examination

To assign student for
examination

Setup paper

To select which question to set
for a particular subject

To inform that the question bank
does not contain any question
for a particular subject

To inform that the paper is
already set.

4 OntoOmput
Requirements

View results To view result in print/ report
form

79

www.manaraa.com

problems cover power source details and power supply mode. Subsequently,

during agreement phase identifies requirement to control the work processes.

Now, this new requirement forwarded to next iteration that is from elicitation

phase to agreement phase. Finally, requirements statements generated and

forwarded to the validation phase for validation and discussion. It is observed

that, the model endures with requirements engineering again and again. To

uncover the aforesaid problem, OntoAidedRE model is used to provide the

acceptable requirements set as illustrated in Table 4.3.

OntoAidedRE model begins with establishment of OntoPre Requirements

such as Login for system activation. Next, Ontolnput Requirements covers

requirements for keeping details of power source. Subsequently, OntoSystem

Operational Requirements indicates requirements for power distribution

operations such as add main grid function and high and low tension line functions.

It also includes requirements for power supply mode operations such as seasonal

and regular power supply, periodic power cut and failures. Now, OntoSystem

Control Requirements covers the requirements to power control that is being

identified in agreement phase of Linear Iterative REP model. Lastly, OntoOutput

Requirements defines requirements for consumer billing such as billing as per

category viz. high tension, low tension and direct reading.

4.4.3 Iterative REP Model vs. OntoAidedRE

As stated before, Iterative REP model comprised of three phases namely;

elicitation, specification and validations. Since, this model performs RE in

multiple iterations hence is suitable for softwares launched versions by versions.

Accordingly, we consider Hotel Management System as an example of OAS for

practicing RE using Iterative REP model. It starts with elicitation phase to acquire

knowledge relevant to the hotel management to produce formal specifications and

further for validation process. But, this model has no methodology set to manage

the project. To eradicate this problem, OntoAidedRE model is practiced to

establish requirement set as shown in Table 4.4.

80

www.manaraa.com

Table 4.3: Power Utility System using OntoAidedRE

S. No. Layer Name Requirement
Specifications

Description

1 OntoPre-
requisites

Login System activation

2 Ontolnput
Requirements

Power Source

Details

To enter types of power
sources such as hydro-power,
hydel power, and nuclear
power

3 a OntoSystem
Operational

Requirements

Power
distribution

Add main grid, high tension
line, low tension line functions

Power supply
mode

Add procedure as per the
mode such as periodic power
cut, failures, seasonal and
regular power supply

3b OntoSystem
Control

Requirements

Power Control To define total power
requirement, number of
generation units

To Shut down the supply as
per the schedule or failure

3c OntoSystem
Parameter

Requirements
Not applicable

4 OntoOutput
Requirements

Consumer
billing

Billing as per the category
such as high tension, low
tension or direct reading

81

www.manaraa.com

Table 4.4: Hotel Management System using OntoAidedRE

S. No. Layer Name Requirement
Specifications

Description

1 OntoPre-
requisites

Login To verify the system
administrator and user identity
by providing the user id and
password

2 Ontolnput
Requirements

Customer details To enter the required customer
details in the system

Employee details To register employee with all
appropriate details

Room details To open a new room type and
related activities

3 a OntoSystem
Operational

Requirements

Booking To allow the customer for
accommodation

Cancellation To allow the customer for non
availing the accommodation

Modification To allow the modification to
room assigned

Check in/ Check
out

To admit and relieve of the
customer from hotel

3b OntoSystem
Control

Requirements
Not applicable 11 111111 111111 11ITTTIII!

II II II II II II

3c OntoSystem
Parameter

Requirements

Membership
details

To validate the customer for
membership, if meets the defined
criteria

Package details

4 OntoOutput
Requirements

Bill generation To view the final statement of
customer in print/ report form
before check out

82

www.manaraa.com

OntoAidedRE model provides a systematic methodology for practicing

RE. It begins with establishment of OntoPre Requirements to verify user identity.

Next, Ontolnput Requirements covers requirements for keeping details of

customers, employees and rooms. Then, OntoSystem Operational Requirements

specify requirements for booking, cancellation, modification, check in and

checkout activities. Now, OntoSystem Parameter Requirements present the

requirements for membership provision and package details. Lastly, OntoOutput

Requirements defines requirements for bill generation to view the final

statement of customer before checkout.

4.4.4 Spiral REP Model vs. OntoAidedRE

As discussed earlier, in Spiral REP model, one spiral represents the

complete version of requirements. Each spiral is divided into four quadrants

called specification extraction, discussing and analyzing requirements,

requirements documentations and requirements validations. The main

characteristic of this model is to handle speciation delay and requirements change

Thus, we consider Credit Ranking System as an example of DSS to establish

requirements set using Spiral REP model. It starts with requirement extraction

phase to identify requirements by consulting with customers, developers and

users. It specifies credit ranking policies with the help of viewing the credibility

of a customer such as the financial status. While, discussing and analyzing

requirements phase helps to get aware with the specified standards as per the class

of a person such as service or business class. Next, requirements document

considers as a base for controlling changes and evaluating future policies. Now,

Validation is done for controlling the quality. This phase continues repeating

other requirements development phases because of identified deficiencies and gap

between requirements. To reveal this complexity, OntoAidedRE model is used to

provide the adequate requirements set as illustrated in Table 4.5.

83

www.manaraa.com

Table 4.5: Credit Ranking System using OntoAidedRE

S. No. Layer Name Requirement
Specifications

Description

1 OntoPre-
requisites

Login To verify person’s identity such
as business class or service class

2 Ontolnput
Requirements

Registration To record the personal details

Standard
definition

To define and enter the standard
limits a per the class

3a OntoSystem
Operational

Requirements

Present working
status

For service class, present salary,
perks and previous experiences
are defined.

For business class, products,
target market, previous balance
sheets

3b OntoSystem
Control

Requirements

Not Applicable U N II II IIIITT TTfTTTTTTT
TTTTTtTTTTTT

3c OntoSystem
Parameter

Requirements

Present financial
status

For service class, add income tax
returns, loans, assets and
liabilities, sources of income

For business class, add balance
sheets, loans repayment track
records, share value and
patterns, assets and liabilities

4 OntoOutput
Requirements

View status The system will generate the
reports as per the processed data

84

www.manaraa.com

OntoAidedRE model helps to avoid repetition of RE activities and handles

the cost and schedule of the system. It initiates with establishment of OntoPre

Requirements to verify the person’s identity such as business or service class.

Next, Ontolnput Requirements specify requirements for user registration for

keeping personal details and standards to enter the standard limits as per the class.

Subsequently, OntoSystem Operational Requirements indicate requirements to

add or modify the present working status of business or service class persons.

Now, OntoSystem Parameter Requirements cover the requirements to provide

present financial status according to rules defined for service and business class.

Lastly, OntoOutput Requirements defines requirements to view status that is

generated by system as per the processed data.

4.5 Comparative Study

A comparative study of different conventional REP models and

OntoAidedRE on the basis of various parameters is illustrated in Table 4.6.

It is observed that conventional REP model such as Linear REP model is

restricted to RE of TPS and MIS project types as it follows sequential life cycle.

Next, Linear iterative REP model is confined to PCS project type as it is helpful

for the system in which the specifications should be pin point accurate and

validated multiple numbers of times through the potential stakeholders.

Subsequently, Iterative REP model performs RE in multiple iterations and hence

it is better for OAS project type. Then, Spiral REP model repeats RE activities

until a decision is accepted about requirement document and hence works well for

DSS project type. On the other hand, OntoAidedRE functions with all project

types as it enables knowledge driven RE depending upon inter-relationship

between different domain requirement types.

It is found that Linear REP model and Linear Iterative REP model limits

the requirements development to small and medium project size as it works for

projects having less complexity and projects facilitated with multiple validations

85

www.manaraa.com

Ta
bl

e
4.

6;
 C

om
pa

ri
so

n
of

 R
eq

ui
re

m
en

t E
ng

in
ee

ri
ng

 P
ro

ce
ss

 M
od

el
s O
nt

oA
id

ed
R

E

<

Sm
al

l,
M

ed
iu

m
 an

d
La

rg
e

O
nl

y 1

U
pt

o 1
00

%

Ti
m

e,
 Cost

an
d

fu
nc

tio
na

lit
y

A
va

ila
bl

e

Sp
ir

al
R

EP
 M

od
el

D
SS

 an
d

ES

M
ed

iu
m

an

d
La

rg
e

11
 to

 2
5

U
pt

o
75

%

Fu
nc

tio
na

lit
y

N
ot

 A
va

ila
bl

e

It
er

at
iv

e
R

EP
 M

od
el

SV
O

M
ed

iu
m

 and
La

rg
e

11
 to

 25

U
pt

o
51

%
-

64
%

Fu
nc

tio
na

lit
y

N
ot

 A
va

ila
bl

e

Li
ne

ar

It
er

at
iv

e
R

EP
 M

od
el

PC
S

M
ed

iu
m

26
 to

 10
0

U
pt

o
65

%
-

74
%

C
os

t
an

d
Fu

nc
tio

na
lit

y

N
ot

 A
va

ila
bl

e

Li
ne

ar
R

EP
 M

od
el

TP
S

an
d

M
IS

Sm
al

l
an

d
M

ed
iu

m
1 to

lO

U
pt

o
65

%
-7

4%

C
os

t a
nd

 T
im

e

N
ot

 A
va

ila
bl

e

Pa
ra

m
et

er

Pr
oj

ec
t

Ty
pe

Pr
oj

ec
t

Si
ze

Pr
oj

ec
t

Te
am

fin
 n

um
be

r]
Pr

oj
ec

t
Q

ua
lit

y

Pr
oj

ec
t

Pr
io

ri
tiz

ed
El

em
en

t
Pr

oj
ec

t
K

ey
El

em
en

t

86

www.manaraa.com

respectively. Then, Iterative REP model and Spiral REP model helps in RE

activities of medium and large project size because these models

suggest the requirement development versions by versions. Conversely,

OntoAidedRE coordinate all project sizes as it provides cohesiveness

depending upon changes in knowledge.

It is noted that, every conventional REP model requires project team

between one to twenty five persons as these REP models work on various RE

activities such as requirement elicitation, analysis, documentation etc. whereas

OntoAidedRE works on layered structure based on requirement types such as

OntoPre, Ontolnput, OntoSystem and OntoOutput requirements.

As illustrated in Table 4.6, conventional REP models provide upto 75%

project quality as these REP models have no efficient methodology to manage the

project. On the other hand, OntoAidedRE provides systematic methodology for

practicing RE and thus improves the project quality to maximum extent.

It is observed that, presence of project prioritized element such as cost,

time and functionality varies across conventional REP models. Linear REP model

includes cost and time but not the functionality as no user interaction or feedback

is provided in its RE activities. For Linear Iterative REP model, cost and

functionality matters as compared to time as it include multiple validation

activity. On the other hand Iterative and Spiral REP model involve only the

functionality element as these models typically works on iterations and versions

Conversely, OntoAidedRE includes all the prioritized elements namely; cost, time

and functionality because it includes requirement types to confirm the project

functionality and thus no cost and time elements are sacrificed.

Project key element includes well defined knowledge artifact to establish

the open-ended progression of RE process. Since all conventional REP models

work on domain driven RE hence not involve this project key element. On the

other hand, OntoAidedRE provides knowledge driven RE and used to strengthen

the generality of concepts depending upon requirement types for

different application domains.

87

www.manaraa.com

4.6 Summary

Requirement Engineering is promising process and especially draws on

with the aim of amenable to analysis, communication, and subsequent

implementation. In this chapter, we have discussed the parameters of study

related to project such as Project type, Project size, Project team, Project quality,

Project prioritized element and Project key element. These play a very significant

role in RE for various types of projects. The conventional REP models with

advantages and limitations in term of practices have been highlighted in next

Section. Also, we have presented Ontology Aided Requirement Engineering

model (OntoAidedRE) covering requirement type, practices and suitability.

Consequently, we have compared conventional REP models namely; Linear,

Linear Iterative, Iterative and Spiral models with OntoAidedRE. The study reveals

that none of conventional REP models acquire all project parameters. This, in

turn, often severely affects the successful completion of projects. We have

presented OntoAidedRE to show a knowledge-driven as opposed to process-

driven approach to RE. It can be put into practice to overcome the problems of

conventional REP models and consequently the project parameters optimally

contrived by adapting OntoAidedRE.

88

www.manaraa.com

CHAPTER 5

Approaches for Ontology Based
Reusability

5.1 Introduction

Currently, the absolute prospective of software reuse in highly variable

domains cause rigid to unleash the software applications. Also, many business

concepts constrained by tight regulations are difficult to protract. Building an

application from scratch is a resource intensive process for information system,

passing by domain-specific variability. When dealing with legacy systems, the

cause emerges especially due to the time elapsed between the requirements

specification for each developed module and the present. Usually, each

application has its own configuration, stores its own data and is guided by its own

business rules [CM07]. As a result, during software development, the reuse

prospect is generally expected condition [RAMOS, FK05],

In addition, it is extensively reckoned that the development and utilization

of reusable software artifacts is necessary for improving software development

efficiency and software prominence. Most software development methodologies

recognize the utility of reuse, and some even provide processes and contrivances

to directly support it. Effective software reuse requires collections of designed-

for-reuse software components. In addition, mechanisms to retrieve reuse

candidates to adapt and create new ones using the information provided by similar

components [MER+03]. Moreover, it is needed to bind these elements using a

software process that truly accede to software reuse. In this context, ontologies

can play an important role. Ontologies have become an important mechanism for

building software, since these can be used to overcome barriers created by

disparate vocabularies, representations and tools. Ontology may take a variety of

forms, but necessarily it includes a vocabulary of terms, and some specification of

89

www.manaraa.com

related meaning [MF03, OVR+06]. This includes definitions of concepts that are

inter-related which collectively impose a structure on domain and constrain the

possible interpretations of terms. Attempts have been made to reconcile the terms

with feature modelling, domain modelling, etc. However, there is strong need of

combining the conceptions of domain with stronger extensibility and with

indexing knowledge population. Accordingly, we develop ontology based

approaches for reusability. The role of ontologies is to capture domain

knowledge in a generic way and to provide a commonly agreed

upon understanding of a domain.

In view of this, we introduce Ontop4ViewReuse framework with ontology

validated composition. It caters in highly variable domains due to emergence of

several dimensions of software development in the course of various abstraction

levels. It is based on ontology oriented systematic P4View approach for reusing.

Next, OntoReuseAlgo for knowledge integration and reuse towards process

planning in software development is commenced. It is based on Ontological

Knowledge Modelling to provide reusable and shareable engineering applications.

Lastly, we develop Ontological reuse (OnR) from Object-Oriented Reuse (OOR).

It potentially applies all the phases of OOR such as development of reusable

artefacts, representation and classification of artefacts into repositories, and

utilization of the artefacts from repositories. Also, a range of classes of reuse have

been identified for comparison of OOR and OnR.

5.2 Background

There exists software reuse around for years and involves variety of

concepts. Early software reuse practices focused on code and implemented in

adhoc or opportunistic manner. Also, the active areas of reuse research in the past

twenty years include domain engineering methods, reuse design, design patterns,

domain specific software architecture and component. All these areas well catered

by Object-Oriented Reuse [DEV02, SS03, HL01, GH95]. Consequently, reuse has

become planned and systematic. But, ontology is adapted to enhance Object-

90

www.manaraa.com

Oriented Reuse. Ontology is a formal explicit description of concepts in a domain

of discourse and oriented towards a systematic method for reusing. In this view,

the reuse approach is introduced early in the life-cycle of software development.

Accordingly, any product of the software life cycle can potentially be reused. It is

a formal and well-documented process which is no more domain-specific and can

be recreated. This approach follows a well-planned, lucrative, and productive

strategy. In addition, it allows the use of existing software or software knowledge

to construct new software. In this section, we describe the subclasses of reuse

followed by Object-Oriented Reuse process and then Ontological Reuse process.

5.2.1 Reuse Subclasses

Ontologies have great potential to deal with software reuse predicaments

of various aspects such as domain specificity, fixed functionality, well

bounded interfaces, performance expectations, and demonstrable

excellence [HAM04, TAOO]. Consequently, we have identified and explained

range of subclasses of reuse as follows;

Software Component Reuse

Software component reuse is the software engineering practice of creating

new software applications from existing components, rather than designing and

building them from scratch. Reusable components can be requirements

specifications, design documents, source code, user interfaces, user

documentation, or any other items associated with software. All products resulting

from SDLC have the potential for reuse. The practice of component reuse

supports the motivation for development of customized applications. Its benefit

includes reduced application development time, reduced application cost, and

improved application quality [KUH98].

Software Architecture/ Design Reuse

The reusability of software design and software architecture refers to the

re-application of representations of one system or component to the construction

of similar ones in a problem domain. It is observed that reusability can be

91

www.manaraa.com

enhanced if the software design and software architecture are explicitly

represented and if the representation can be easily understood and manipulated

(modified and reconstructed) towards a varieties of target systems [SS99].

Software Requirements Reuse

Requirements reuse is an approach to systematically use existent

requirements documents for reducing the general effort inside the software life

cycle. From the point of view of improving requirements engineering,

requirements reuse aids by recording the adopted suppositions, made decisions,

and adopted alternatives for future reference. It provides the ease of the change

management of requirements. Moreover, requirements reuse is helpful in the

assistance, guidance and advising for the requirements engineer in the process of

requirements acquisition [OM99].

Software Process Reuse

Software process reuse represents a new practice for software production

in which a conceptual knowledge representation is used to represent and guide

development activities. During software process reuse, process engineers specify

a software process that is tailored for project goals and other resource constraints,

and then enact the process as a guide for developers [HOL98].

Software Technology Reuse

Software technology reuse provides certain types of services to their users

such as storage, searching, inspecting and retrieval of artifacts from different

application domains, and of varying granularity and abstraction, loading, linking

and invoking of stored artifacts, and specifying artifact relationships [BAR06].

Software Experience Reuse

Software experience reuse enables people to effectively reuse components.

It is observed that, the visual interface design is perhaps even more important

than the user need as a succinct way of communicating the purpose

of the component to designers [ABH+99],

92

www.manaraa.com

5.2.2 Object-Oriented Reuse Process

To effectuate reuse, three major engineering activities must be addressed

as shown in Figure 5.1. Firstly, reusable artifacts must be intentionally designed

and developed. Secondly, reusable artifacts must be represented, classified, and

entered into and removed from appropriate repositories. And, subsequently tools

and processes must be developed that support finding, understanding, modifying,

and composing artifacts [WER97, SMJ02]. Now we discuss them as follows;

Development of Reusable artifacts

Development of reusable artifacts concerns with the work required to

establish a set of software artifacts that can be reused by the software engineer. Its

purpose is to identify, model, construct, catalog and disseminate a set of

software artifacts that can be applied to existing and future software in a

particular application domain.

Representing Reusable artifacts

The most difficult problem with reuse is developing a suitable

representation for artifacts. In particular, it resembles a representation that

encodes the semantics of artifacts. Users trying to solve a problem with own

knowledge and semantics can locate an appropriate reusable artifact. Such

artifacts must be retrievable by multiple pathways to support variety of different

ways in which users may access them. Furthermore, representation allows for a

variety of different perspectives on stored artifacts, and permit versioning and

configuration management activities. Also, it allows for representation of partial

and uncertain information. This allows artifact developers to evolve the designs

over time by permitting well-defined aspects to be expressed with certainty, and

less well-defined aspects to be left fuzzy.

Repository Reusable artifacts

Artifacts must be classified and entered into repositories, once artifacts

have been represented. Classification of artifacts is an indexing issue. As such,

artifacts are classified in order to indicate the type and relation to other artifacts.

93

www.manaraa.com

There exist two well known schemes for repository classification accomplishment

such as enumerative and faceted. Enumerative scheme divides the universe into a

collection of domains and sub domains. However, faceted approach does not rely

on a prior division of the universe into domains, but rather

synthesizes a classification of an artifact based on the selection of

properties from a collection of facets.

Supporting the Reuse of artifacts

Once artifacts have been developed, represented, and categorized into

repositories, the next concern is to utilize this wealth of information.

Software developers need tools and processes for finding, understanding

and using reusable artifacts.

Finding artifacts

To find artifacts, users describe the requirements and tools included for

requirement satisfaction. This simple declarative model is rarely achieved in

practice as most representations are insufficient to support sophisticated queries

and reasoning. Sophistication of techniques for finding information is dictated by

the representation scheme. Hence, the extent of OOSE to support retrieval will be

dictated by representation scheme.

Understanding artifacts

Once artifacts have been located, it is necessary to understand in order to

use these artifacts. OOSE has potential to enhance the understandability of

software artifacts. Strength of an object-oriented approach is that it offers a

mechanism that captures a model of the real world termed as objects.

Using artifacts

This activity has been viewed as a fundamental part of development

process. There exist varieties of different ways in which an artifact may be reused.

A retrieved artifact that is useful without modification need only be integrated i.e.

“plugged" into the system. However, if an artifact requires modification, it may be

94

www.manaraa.com

Figure 5.1: Object-Oriented Reuse Process

95

www.manaraa.com

necessary to refine or compose it. Then, combination of retrieved artifacts is

required. In an object-oriented system, the refinement and composition tasks are

potentially simpler. By using inheritance, refinement is described as top down

process of specifying the differences between inherited state and behavior of an

existing object and requirements of desired object. With excellent support of

encapsulation and message protocols, composition is a bottom up

process of connecting together the proper object building blocks to

form the desired component [SS04],

5.2.3 Ontological Reuse Process

Ontological reuse process starts with the identification of knowledge

sources useful for the application domain that differs in represented content as

well as in the formalization [SMJ02]. An automatic integration of the source

knowledge does not mean only the translation of the representation languages to a

common format, but also the matching of the resulting schemes. Ontological

reuse process has been introduced early in the life-cycle of software development

as it is a formal and well-documented process which is domain unambiguous and

can be recreated as shown in Figure 5.2. The process is describes as follows:

Determine Scope

It refers to defining concepts in the domain (classes). There exists no

correct ontology of a specific domain. Ontology is an abstraction of a particular

domain, and there always subsists viable alternatives. This abstraction must

be determined by the use to which the ontology kept and by future extensions

that are already anticipated.

Define Taxonomy

It ensures arranging the concepts in a hierarchy (subclass super class

hierarchy). Since, the hierarchy must be efficient or reliable hence user opinions

may differ to select the type of hierarchy to define taxonomy. The types include

top-down or a bottom-up fashion.

96

www.manaraa.com

97

www.manaraa.com

Define Properties

It defines attributes or properties (slots) that classes can have and

constraints on their values. While attaching properties to classes, it has been

observed that it immediately provide statements about the domain and range of

these properties. There exists a methodological apprehension between generality

and specificity such as flexibility (inheritance to subclasses) and detection of

inconsistencies and misconceptions.

Define Facets

It asserts defining individuals and filling in slot values with cardinality

restrictions and relational characteristics such as symmetry, transitivity, inverse

properties, and functional values.

Define Instances

Filling the ontologies with instances is a step concerned with creating a

knowledge base. It defines individual instances of various classes and

filling in specific property such as specific slot value information and

additional slot restrictions.

5.3 P4View Approach Based Framework

The key challenge while managing and characterizing reusability in highly

dynamic domains is to identify the relations and representations of software

artifacts and resources involved. In such context, we have proposed P4View

approach for building systems, adaptable to each user with common

characteristics. This approach makes use of ontologies pact to the knowledge and

experience of users, history of previous actions, goals, intentions, interests and

preferences. Using this approach, OntoP4ViewReuse framework for software

development is described. Framework emphasizes on different levels of

abstraction that provides an unambiguous terminology, allowing its reuse and

easy extension. The detailed description of P4View approach and

OntoP4ViewReuse framework is as follows:

98

www.manaraa.com

5.3.1 P4View Approach

We have proposed a P4View that resorts to available ontological

knowledge and are implicitly tailored to specific application needs. In turn, it

cannot be reused in different settings. While, in P4View approach additional

ontological primitives like properties and axioms are supported explicitly. P4

stands for Pretence-Persuade-Problem-Product, defining the various abstraction

levels to be accomplished during the software development. Figure 5.3 represents

the overview of P4View approach, references ontologies. Each of these views

represents a meticulous attribute of the ontology and defined as follows:

Pretence View

Pretence view caters by high level ontology that includes representational,

terminological and social ontologies. Representational ontology helps in

identification of knowledge sources useful for the application domains that differ

both in represented content and in formalization. In addition, terminological

ontology describes general concepts that are independent of a specific domain or a

problem such as space, material, objects etc. Lastly, social ontology includes the

terms such as actor, position, role, authority, responsibility or commitment.

Problem View

An automatic translation of the source ontologies from a common format

to the representation languages is carried out at Problem view. It is supported by

domain ontology that is comprised of informational, intentional and static

ontology. Informational ontology structures the standardized storage of

information. While, intentional ontology describes aspects of world of intentions,

goals, beliefs alternatives and elections of involved users. Lastly, static ontology

describes the terms such as entity, object and relationship.

Persuade View

The identification of terms specific to the problem resolution methods and

or tasks is involved at Persuade view. This view includes dynamic and method

99

www.manaraa.com

Figure 5.3 P4View Approach

100

www.manaraa.com

ontology. Dynamic ontology articulates terms such as process, state or state

transitions. In addition, matching of the ensuing method is accepted at Persuade

view. Hence, task ontology signifies method ontology. It offers a reasonable point

of view to the knowledge of the domain.

Product View

It categorizes the roles played by the domain entities when executing an

activity. It includes the controlled vocabularies, informal and formal hierarchies,

frames, value constraints and generic logical constraints prolonged with

application ontology. Finally, application ontologies revealed the reuse source

vocabularies to a large extent in Product view.

5.3.2 OntoP4ViewReuse Framework

Ontop4ViewReuse is based on ontology oriented systematic P4View

approach for reusing. OntoP4ViewReuse bring about to apply the ontology of

varying levels of notion such as high level, domain, task and application ontology.

This cataloging of ontologies is useful for the development of reusable and high-

quality software application. In addition, through ontologies, the eliciting and

modelling of the knowledge is being carried out using P4View approach that

concentrates on different levels of abstraction. Initially, the general knowledge of

the domain is elicited and specified in one or more views and finally serves the

next views to develop the specified application. As a result, phase wise procedure

is introduced to construct Ontop4ViewReuse framework. These phases are

described as below:

High Level Ontology Phase

We have consider all possible aspects of a system such as its type,

associated directives and activities performed by people in various types of

system with its own rules, to define the scope of this ontology phase. As depicted

in Figure 5.4, System is composed of System’s Type in which different Activities

are performed by Human Resources. We also include the fact

101

www.manaraa.com

Fi
gu

re
 5

.4
 P

re
te

nc
e V

ie
w

us
in

g
H

ig
h l

ev
el

 O
nt

ol
og

y

10
2

www.manaraa.com

that a system adopts Directives to be followed in the execution of the tasks.

Database management systems, utilities and system softwares such as operational,

network and middleware are included in System’s Type.

Activities are majorly classified into three types such as investigation,

modification and management. Activity uses one or more input artifacts and

affects one or more output artifacts. It precedes some activity and or part of some

other activity. Investigation activities focus on assessing the impact of

undertaking the modification where as management activity contributes to the

configuration control of the products. In addition, modification activity includes

corrective and enhancement activity aiming at adaptive, preventive and perfective

continuation during the product construction.

Directives support system such as online documentation to help and

contrivance guidelines, Architectural design for dynamic library reuse and

Requirement for change to specify the new one. Also, data structures such as

structure of data files or databases are mentioned with Interoperability to feature

the communication with other systems and Security to ensure the

integrity of system. Finally, execution of system is included for

performance or instability measurements.

Human Resources include software engineers such as suppliers and

maintainers. Supplier develops the system and maintainer maintains the system.

In addition, maintenance manager is responsible to conduct concerned

maintenance procedures and client human resources include clients and users.

Domain Ontology Phase

In the context of software engineering a domain defines as an application

area, for which software system has to be developed. Domain Ontology refers to

reuse-based process used to define scope and structure. Also, it illustrates reusable

attribute for various kinds of system having different domain specifications and

support specifications. Taxonomy of domain can be decomposed into its Job and

Components as shown in Figure 5.5. It consider and represent similarities and

103

www.manaraa.com

Domain

I
Component

Snpport Specification

Software Item

Eiecntisn

Deployment

Hardware Item

Model

Figure 5.5 Problem View using Domain Ontology

104

www.manaraa.com

difference between the systems within a domain. Components represent all the

coded artifacts that compose the software program itself. These are classified into

execution components generated for the software execution and deployment

component for composing the executable program.

Job is decomposed into two kinds according to the type of specifications

such as domain specifications and support specifications. Domain specifications

are composed of requirement, design and product specifications for describing the

system’s behavior and structure. Different view models may be defined to

redefine the design specifications at logical and physical level. Moreover, support

specifications helps in operating the system such as document to illustrate the

results obtained from the study of the reuse of requirements, software design, and

generic architectures. Also, it includes identification of hardware to install the

system and the compatibility of software with it. In addition, model illustrates

information in an understandable fashion through formal presentation.

Task Ontology Phase

Tasks or procedures are the structured descriptions used in a software

development activity such as Methods, Techniques and Assertions as shown in

Figure 5.6. Methods are the kind of systematic procedures with semantic and

syntactic definition to be followed. On the other hand, Techniques are the logical

procedures less formal and rigorous than a method. Techniques begin with

requirement elicitation that includes procedures (such as interviews and

brainstorming etc.) to assist in the identification of requirements. Subsequently,

modelling techniques adopts specific modelling language to define the systematic

solution for a problem followed by programming technique (may be structured or

object oriented). Consequently, testing techniques include such as white or black

box etc. Lastly, maintenance techniques classified into reverse engineering, re

engineering, impact Analysis and program comprehension to assist in the

maintenance of program. Lastly, Assertions defines directives or the standards

such as guidelines or norms defined to use the system.

105

www.manaraa.com

Maintenance
Technique

Testing Technique

Impact Analysis lechniqne

Program Understanding

Modeling Technique

Re engineering Technique

Figure 5.6 Persuade View using Task Ontology

A
+

106

www.manaraa.com

Application Ontology Phase

Application Ontology organizes the process that builds products from

software elements abstracted through domain and task ontology. Application

ontology depicts Concept and Task that compose an application. Also, Properties

associated with each Concept and Restrictions applied to an application is

specified as illustrated in Figure 5.7. Concept is aiming at satisfying the

application needs of a specific kind of user and performance expectations. Next,

Property refers to a component that supply the functionality needed by the user.

And, Restrictions signify to constraints that may be logical or value applied

during the software development to validate the requirements. Lastly, Procedures

indicate functionality of product that must be fixed, along with its preconditions

and post-conditions. Thus, users will know exactly the product’s

function under all circumstances.

Now, we integrate all these phases in a single conceptual framework

OntoP4ViewReuse as shown in Figure 5.8. The framework contemplates on

different levels of abstraction namely; Pretence, Problem, Persuade and Product

views consistent with types of defined ontologies. Levels of abstraction relate to

the completeness, and to the value of reusable property. Level 1 abstraction

signifies the constituents as agreed for repository population on the basis of

generalized stipulate only. This level established with the components of high

level ontology such as representational, terminological and social ontology.

Representational ontology indicates system, system’s type. Next, Activities and

directives present terminological ontology and human resources are explicitly

defined inside social ontology. The completeness of the high level ontology

components is well recognized at this level.

Subsequently, Level 2 abstraction configures domain ontology

constituents such as informational, intentional and statical ontologies.

Informational ontology defines the components. Statical ontology describes

domain specifications and intentional ontology indicates support specifications.

As discussed earlier, these specifications are included in Job constituent.

107

www.manaraa.com

jratoar

Concept azsmiatedwdk
-- Procedure

part of

\ r
Mr

regulate

f
Property Restrictions

__r~ ik

Logical Value

Figure 5.7: Product View using Application Ontology

108

www.manaraa.com

Next, Level 3 abstraction renders task ontology. This level determines

many idiosyncratic such as methods, techniques and assertions that are

perceptibly delineate in methodical and dynamic ontologies of task ontology.

Lastly, Level 4 abstraction structures the application ontology constituents such as

vocabularies, hierarchies (formal and informal), frames and constraints (may be

logical and or value) that is to be released to users and it verifies completeness. A

concept that is part of property associated with task and restrictions offer a

highest degree of abstraction.

5.3.3 Case Study

To tap the full potential of existing domain-relevant knowledge sources,

ontology is being accepted. At this instant, reuse with the help of ontology is

defined as the process in which ontological knowledge is used as input to generate

new ontologies. Depending on the content of the knowledge sources and domain

overlapping, the implications of reuse in the overall development process can be

clarified. We address the reuse process to a greatest extent using

OntoP4ViewReuse framework in the domains of e-Recruitment and e-Medicine.

Case I- e-Recruitment portal

e-Recruitment portal allows a uniform representation of job postings, job

seeker profiles and semantic matching in job seeking and procurement tasks. It

facilitates to support common practices from the industry and to maximize the

integration of job seeker profiles and job postings from different organizations.

High level ontology underlying this job portal is aligned to established domain-

specific standards and classifications. The selection of high level ontologies is

followed by the customization and integration to the new ontology. We identified

the sub-domains of this system such as networked system type includes

professional, educational and industrial areas. Next, domain ontology is used to

define concepts representing competencies to describe job requirements as well as

job seeker skills. Due to the domain setting, component classification standards

such as the occupation component and the industrial sectors component have to be

completely integrated in the new ontology. To extract the relevant fragments from

110

www.manaraa.com

task ontology, we compiled a small conceptual vocabulary from various job

portals and job procurement web sites and matched these core concepts to the

source ontology. The usage of the ontology in semantic matching tasks requires

that it is represented in a highly formal representation language. For this reason

the implementation of new ontology has realized by translating several semi-

structured input formalisms using application ontology.

Case II- e-Medicine portal

We developed e-Medicine portal for lung pathology to analyze the

practice in a retrieval system for representation content data in the medical

domain. This e-Medicine portal provides a concept-based reuse technique and

semantic annotation of pathology reports. To develop high level ontology, we

identified anatomical, clinical and pathology-specific system type and separate the

application relevant knowledge from the general purpose medical knowledge.

On the other hand, domain ontology covers both domain and application

relevant knowledge that is specific to the health-care institution involved in the

project. Also, medical components such as digital anatomist are tailored to

domain ontology. For this purpose domain experts identified four central concepts

such as '‘lung”, “pleura”, “trachea” and “bronchia” and included to the task

ontology. Also, this standard format for the representation of patient data and

patient records and immunohistology guidelines used by domain experts in

diagnosis procedures, significant parts of the pathology domain, are

integrated in task ontologies.

A large part of pathology specific method such as vocabulary with a

lexicon generated from an archive of medical reports resulted in further

refinements of the application ontology. It is implemented to describe the

anatomy of typical diseases aligned to generic and core medical concepts.

Additionally, application ontology is needed for semantic annotation required a

maximal coverage of the vocabulary used by domain experts in medical reports.

Ill

www.manaraa.com

5.3.4 Benefits of OntoP4ViewReuse

We propose OntoP4ViewReuse framework using P4View approach to

utilize the content of the source ontologies to a maximal extent depending on their

particular domain and level of formality. Adopting OntoP4ViewReuse based

software development process attracts a number of benefits to both the end-users

and developers. These include the following:

Savings in costs and time: As a developer uses already pre-defined components,

hence, the activities associated with components specification, design and

implementation are now replaced with finding components, adaptation to suit new

requirements, and their integration. Though, ontology based reuse certainly attract

additional effort, time and cost. These costs, however, can be offset by savings in

a number of different software projects.

Increase in productivity: It has been shown that reusable artefacts developed

from OntoP4ViewReuse can be viewed as abstract level of concepts drawn from a

given problem domain. Hence, working with such higher level of abstraction

leads to an increase in development productivity

Increase in ease of maintenance: Systems constructed of reusable parts are

usually simpler and more abstract. Also, the designs are closer to the problem

domain and their consistency is greater. This of course has very positive impact

on the quality of such systems maintenance.

Increase in reliability: OntoP4ViewReuse suggests that the life-span of reuse

artifacts is much greater than that of any individual product. Thus, the reliability

of such artifact is also increased. This also leads to an improved reliability of

systems built of reusable components rather than of those built

entirely from scratch.

High speed and low cost replacement of aging systems: Systems developed

using OntoP4ViewReuse shares a very large collection of concepts via ontology,

thus, have become significantly multifaceted. Such systems need less effort

during porting or adaptation to new hardware software environments. Also, the

112

www.manaraa.com

reusable components of the system are technology intensive and very expensive

to develop but sharing that cost across several systems certainly reduce it when a

global replacement of computing resources have effect.

5.4 Ontological Knowledge Modelling Based Algorithm

Reuse also responds to an increasing insist for highly reliable, high

excellence and less expensive systems. Accordingly, knowledge reuse benefits

and improves the process planning in software development greatly. Process

planning is an intermediate phase between design and implementation. Lucidity

and prescribed specification of concepts play a key role in the inclusion of reuse

during process planning. Therefore, a most important issue is to build a common

conceptual base characterized by knowledge. Our exploration focuses on this task

through developing OntoReuseAlgo based on Ontological Knowledge Modelling.

The brief description of Ontological Knowledge Modelling is illustrated below:

5.4.1 Ontological Knowledge Modelling

We propose an Ontological Knowledge Modelling for knowledge

integration and reuse towards process planning in software development. It

constitutes System Element Classification, Ontolayering Principle and Knowledge

Reuse Scheme to provide reusable and shareable engineering applications. The

detailed description of these constituents is as follows:

System Element Classification

It is developed to capture important characteristics for reducing the

growing complexity of information and increasing need to exchange it among

various software applications. The classification includes abstract concepts such

as Work units. Stages, Work products and Producer as shown in Figure 5.9. Work

units constitute tasks or activities that software developers perform, and have a

start and end time as well as duration. Subsequently, Stages describes major time

frames that help work to provide temporal structure.

113

www.manaraa.com

Fi
gu

re
 5

.9
: C

la
ss

ifi
ca

tio
n

of
 S

ys
te

m
 E

le
m

en
ts

114

www.manaraa.com

Next, Work products such as documents or software, are intangible results of

performing work units indicates creations and last change times with status. The

status of work product may be initial, complete, accepted or approved. Finally,

Producers includes people and teams that actually perform work units in

order to create work products.

Ontolayering Principle

Ontolayering Principle focuses the ontology in a resource usage manner,

specifically by understanding and dissimilating the information comprised by

entities. The three prospects namely; Metamodel, Process and Product prospects

have been defined around communities that network with ontology as shown in

Figure 5.10. Meta-model prospect acts as a common standard determining the

other prospect. Meta-model is intended to be used as an origin by method

engineers so that the methodologies can be developed. Method engineers typically

uses the concepts in meta- model prospect by sub typing and instantiation, thereby

creating new concepts (subtype of existing ones) and entities (instances of

concepts). All these new concepts and entities created by method engineers are

seized to form a Process prospect. Software developers use it by creating the

instances of concepts and also, by following the guidance explained by

entities. Thus, the instances created by software developers are

apprehended to form Product prospect.

Knowledge Reuse Scheme

It starts with formalizing the system element requirements according to

representation approach of System Element Classification. Subsequently,

identification of the related process concepts and entities that need to be revised

according to Ontolayering Principle retrieved from the knowledge base.

Consequently, modification of the producer entities, associated concepts based on

Ontolayering principle and revision of the influencing product attributes

conceded. Finally, simulation of the results is done if the reuse requirements are

satisfied otherwise it considers changing a different process concept and entities.

115

www.manaraa.com

ENDEAVOURMETA MODEL

C
on

ce
pt

 D

C
on

ce
pt

 C

Pr
od

uc
t

f
So

ftw
ar

e
\

D
ev

el
op

er

Pr
oc

es
s

C
on

ce
pt

 E

j»»nt3n3
^

V

poqjejV

/■

C
on

ce
pt

 A L
C

on
ce

pt
 B

Fi
gu

re
 5

*1
0:

 A
rc

hi
te

ct
ur

e o
f O

nt
ol

ay
en

ng
 P

rin
ci

pl
e

116

www.manaraa.com

5.4.2 Ontology Based Reuse Algorithm (OntoReuseAlgo)

We propose Ontology Based Reuse Algorithm (OntoReuseAlgo) using

Ontological Knowledge Modelling approach to aid the product design of process

plans. It is used to give a uniform representation of the involved information and

starts with understanding the system elements. It includes identifying process

concepts and entities that need to change followed by altering with Ontolayering

principle and modify the producer entity and the associated concepts which help

in revising the influencing product attributes for simulating the final process plan.

Figure 5.11 shows overall procedure of the proposed approach and knowledge

reuse strategy in process planning. The stepwise procedure of process planning

task is as depicted:

Step I: Formalize the system elements according to the representation
approach of System Element Classification.

Step II: Identify the related process concepts and entities that need to be
added according to Ontolayering principle retrieved from the
knowledge base.

Step III: Modify the producer attributes and associated concepts based
on Ontolayering principle.

Step IV: Revise the influencing work product.

Step V: Simulation of the results in step IV. //if the knowledge reuse is
satisfied, then shifts to step V; or else, shift to step II and
consider changing a different process concept and entities.//

Different systems may use different concepts and terminology to express

the same objective while same words may be used to represent different objective

by different systems. Both situations hinder information communication.

Therefore, step I uses System Element Classification. Conversely, process and

product concepts that need to change are properly identified and revised through

mappings of related Ontolayering Principle to certain process and product

prospects in step II, III and IV. Lastly, Knowledge Reuse Scheme is applied to

step V for providing vocabulary and the meaning of the terminology.

117

www.manaraa.com

Figure 5.11: Ontology Based Reuse Algorithm (OntoReuseAlgo)

118

www.manaraa.com

5.4.3 Case Study

We describe design of process planning for Inter-warehouse Management

System using OntoReuseAlgo. The system is responsible for redistribution

between different warehouses. The window for redistribution between

warehouses is as shown in Figure 5.12. Various people are responsible for

carrying out different processes such as foreman is responsible for warehouse

management. While, warehouse worker works in a warehouse for loading and

unloading. Subsequently, truck driver is accountable for transportation and

forklift operator drives a forklift in one warehouse.

Now, on executing first step of OntoReuseAlgo, we analyze various

system elements such as work units that include request for redistribution,

fetching item from warehouse and delivers the item to the new warehouse. Then,

producers constitute foreman, warehouse worker, truck driver and forklift

operator. Consequently, work product comprised of initialization, loading and

unloading as illustrated in Table 5.1.While, during the execution of second step,

we identified various process concepts that need to be added. These processes

include unexecutable request, wrong redistribution and unavailability of truck as

depicted in Table 5.2. Accordingly, step three suggests modification of producer

element of step one by including office personnel in it. Official personnel

coordinate the transport requests that affect initialization, loading and unloading.

Finally, execution of step four recommends a new influencing product attribute

termed as planning as shown in Table 5.3. Therefore, revised work product

comprised of initialization, planning, loading and unloading.

Lastly, we simulate work product that starts with completion of

initialization work unit than planning, loading and unloading. This revised work

product eases the redistribution between the warehouses.

11.9

www.manaraa.com

C
an

ce
l

Ex
ec

ut
e

K
ar

ls
bo

rg

Jo
hn

ss
on

W
ar

eh
ou

se

Is
su

er

W
he

n

92
03

15

Q
ua

nt
ity

i i

<

12
34

56

a Lu
nd

R
ed

is
tri

bu
tio

n
N

o;

Fr
om

A
15

Ite
m

ba
na

na
s

W
ee

k
A

ll

K
al

m
ar

Lu
nd

St
oc

kh
ol

m

A
iv

es
ta

To
 w

ar
eh

ou
se

N
O

A
LL

D
32

A
1SA1

2

Fr
om

 P
la

ce

O
rd

er

B
an

an
as

C
om

pu
te

rs

O
il

D
ru

m

Sc
re

w
w

S
"

Ite
m

s

R
ED

IS
TR

IB
U

TI
O

N
 B

ET
W

EE
N

 W
A

R
EH

O
U

SE
S

120

Fi
gu

re
: 5

. 1
2:

 R
ed

ist
ri

bu
tio

n b
et

w
ee

n
W

ar
eh

ou
se

s W
in

do
w

www.manaraa.com

Table 5.1: Inter-Warehouse Management System Work Product

S. No. Work Units Description

1 Initialization 1. The foreman gives a command for redistribution between
warehouses

(when foreman 2. The window in Figure 5.12 is presented to the foreman
gives request to
do the
redistribution)

3. The items can be ordered in a number of ways with ORDER
menu such as alphabetical, index, turnover of the items and
storing order.

4. In the ‘From place’ table we may choose to view either all places
in the current warehouse or, if we have selected an item, the
place where the item exists

5. In the ‘To warehouse’ table we may select all warehouses or the
warehouses that we have to transport to this week

6. The ‘Issuer’ and ‘warehouse’ fields are automatically filled when
the window pops up.

7. The foreman selects an item by pointing to it and dragging it to
the Redistribution form then selects from which place to take the
items and to which warehouse to transport them.

8. The foreman then gives the quantity to be moved and the date.
9. It is possible to change the information when the form has been

edited. When the foreman EXECUTES the redistribution, the
transport is planned. It is also possible to CANCEL the
redistribution. Selecting HELP shows w'indow of information
about the current window.

2 Loading 1. A Truck driver asks for a transportation request. The request is
marked as ongoing.

(when truck
fetches the item

2. Give an appropriate request to the Forklift operators to have the
items ready when and where the truck is expected.

from the
warehouse)

3. When the Warehouse Worker gets a request to fetch items at
appropriate time, orders Forklift operators to move the items to
the loading platform

4. When the Truck driver arrives the items are loaded. The Truck
driver tells the system when the truck is loaded and when it is
expected to be at the new warehouse.

5. Decrease the number of items in this ware house and mark the
transport request as on transport

3 Unloading 1. When the truck has arrived at the new warehouse, the items are
unloaded

(when a truck
delivers the

2. The Truck driver tells the system that the transport to this
warehouse has been done.

items to the new
warehouse)

3. The Warehouse workers receive the items and determine a place
for them in the warehouse

4. Forklift operators are told to move the items to the new place in
the new warehouse

5. When the Truck driver confirms the insertion, the system updates
the new place for the items

6. The transportation time is recorded and stored in the system
7. The Redistribution and the transport request are marked as

performed.

121

www.manaraa.com

Table 5.2: Identified Processes

S. No. Process Description

1 A request is not
executable

The execution is interrupted and the Foreman issuing the
request is informed

2 Redistribution is
wrong

The warehouse place does not have enough items to move
The destination warehouse is not appropriate to the item

3 No truck available When performing loading, and unloading, there may not be any
truck available at an appropriate time. Then notify the Foreman
who should either delete the request or change it.

Table 5.3: Influencing Product Attribute

S. No Planning Description

1 To coordinate
transports and issue
transport requests

1. When the redistribution is executed the items to be moved are
marked as move-pending

2. Minimize the use of trucks on condition that all delivery dates
should be held and the trucks should be compatible with any
delivery requirements for the items.

3. The transport requests are connected to a specific truck’s
transportation plan.

122

www.manaraa.com

5.4.4 Benefits of OntoReuseAlgo

OntoReuseAlgo aims to improve the knowledge reuse in process planning

for software development. It supports the application from three aspects such as

System Element Classification, Ontolayering Principle

and Knowledge Reuse Scheme for process planning. We have observed the

following significant benefits:

• Through organizing and modelling the knowledge towards the

characteristics of design processes, unnecessary search time can be

avoided on irrelevant knowledge items.

• It allows explicit credentials for analysis and comparison of different

domain theories.

• It describes knowledge acquisition approach to structure the entities and

relations that need to be acquired in the domain.

• It provides a meta-level view (vocabulary and structure) on their domain

which facilitates adequate system documentation and constructs reusable

knowledge-system design.

• It can be used to define assumptions that enable knowledge exchange

between different users.

5.5 Ontological Reuse (OnR) from 0-0 Reuse(OOR)

An available reuse methodology such as OOR addresses reusability issue

only marginally. Though it mentions the possibility of reusing existing knowledge

sources as input for the conceptualization phase, it fails to define precisely

knowledge discovery and the subsequent evaluation of candidate knowledge.

Also, it describes in detail to build and represent reusable artifacts, but furnish a

relatively sketchy recommendation for supporting existing reusable artifacts.

Figure 5.13 illustrates more pragmatic process OnR, which exploit OOR process

to a maximal extent depending on the particular domain and level of formality.

OnR process extremely addresses this issue in the context of knowledge

123

www.manaraa.com

customization/pruning, explicitly extracting relevant fragments from very

comprehensive, general purpose ontologies [SS99, REI97], In addition,

OnR provides a detailed description of reuse process and its implications

in the overall engineering process.

5.5.1 Mechanism of OnR Development

We propose a generic and incremental process that concentrates on

vocabulary of the input sources. And, subsequently inserts additional information

corresponding to application needs. OnR process taps the full potential of OOR

process from development and representation of reusable artifacts to supporting

the reusable artifacts. Figure 5.13 illustrates the mapping of OOR notions

analogous to each of OnR notions. The development and representation of

reusable artifacts of OOR are concerned with the identification, modelling,

cataloging and disseminating a set of software artifacts that can be applied to

existing and future software in a particular application domain.

Besides, it encodes the semantics of artifacts in such a way that a user,

trying to solve a problem with own knowledge and semantics can locate an

appropriate reusable artifact. Therefore, these notions mapped with determining

the scope, taxonomy and properties. In OOR, once artifacts are represented, they

must be classified and entered into repositories. As such, artifacts are classified in

order to indicate the type and relation to other artifacts. There are two well known

schemes for doing this repository classification: enumerative and faceted [KG02].

Formerly artifacts have been developed, represented and categorized into

repositories; the next concern is to utilize this wealth of information

specifically supporting the reusable artifacts. Thus, relates with defining

the facets and instances of OnR.

5.5.2 Categorical Comparison of OOR and OnR

On the basis of aforementioned reuse subclasses, we have presented a

comparative study to systematically exemplify the object oriented reuse versus

ontological reuse as shown in Table 5.4. To begin with, Software Component

124

www.manaraa.com

Figure 5.13: Object Oriented Reuse to Ontological Reuse

125

www.manaraa.com

Ta
bl

e 5
.4

: O
bj

ec
t O

ri
en

te
d

R
eu

se
 v

s.
O

nt
ol

og
ic

al
 R

eu
se

(C

on
td

 ..

O
nt

ol
og

ic
al

 R
eu

se

•
En

ab
le

s m
ul

ti fa
ce

d d
es

cr
ip

tio
n o

f c
om

po
ne

nt
s b

y
le

xi
ca

lly
 an

al
yz

ed
, sto

re
d,

 and
 ind

ex
ed

 usi
ng

 the

to
ke

ni
za

tio
n

an
d

in
de

xi
ng

 m
ec

ha
ni

sm
s.

•
G

en
er

at
in

g s
em

an
tic

 in
st

an
ce

s f
or

 th
e c

on
ce

pt
s a

nd

re
la

tio
ns

.
•

A
llo

w
s se

m
an

tic
 ma

tc
hi

ng
 ba

se
d u

po
n si

gn
at

ur
e-

ba

se
d

qu
er

ie
s a

nd
 me

ta
da

ta
 k

ey
w

or
d

qu
er

ie
s.

•
A

llo
w

s a
na

ly
sis

 an
d c

om
pa

ris
on

 o
f d

iff
er

en
t d

om
ai

n
th

eo
rie

s.
•

St
ru

ct
ur

es
 kn

ow
le

dg
e a

cq
ui

sit
io

n fo
r ent

iti
es

 an
d

re
la

tio
ns

.
•

Pr
ov

id
e a

 m
et

al
ev

el
 vi

ew
 (v

oc
ab

ul
ar

y
an

d
str

uc
tu

re
)

•
fa

ci
lit

at
es

 ad
eq

ua
te

 sy
ste

m
 do

cu
m

en
ta

tio
n.

•
D

ef
in

e assu
m

pt
io

ns
 that

en
ab

le
 know

le
dg

e
ex

ch
an

ge
 b

et
w

ee
n

di
ff

er
en

t a
ge

nt
s.

•
D

ef
in

es
 th

e
op

tio
na

l p
ar

ts
of

 ca
nd

id
at

e
sy

ste
m

.
•

M
od

el
s th

e c
om

pl
ex

 an
d a

lte
rn

at
iv

e c
ou

rs
es

 wh
ic

h
se

ld
om

 o
cc

ur
.

•
O

ut
lin

e se
pa

ra
te

 sub
 cou

rs
es

 wh
ic

h ar
e ex

ec
ut

ed
on

ly
 in

 c
er

ta
in

 ca
se

s.
•

M
od

el
s t

he
 si

tu
at

io
n i

n
w

hi
ch

 d
iff

er
en

t m
od

es
 ca

n
be

 in
se

rte
d.

O
bj

ec
t o

rie
nt

ed
 R

eu
se

•
R

ed
uc

e
th

e
nu

m
be

r o
f p

ar
am

et
er

s.
•

A
vo

id
 u

sin
g

op
tio

ns
 in

 co
ns

tra
in

ts
.

•
Pr

oh
ib

it
th

e
di

re
ct

 ac
ce

ss
 to

 in
st

an
ce

s.
•

Im
pl

ie
s m

or
e

co
he

si
ve

 a
nd

 p
rim

iti
ve

 o
pe

ra
tio

ns
.

•
Id

en
tif

y th
e s

ys
te

m
’s

 res
po

ns
ib

ili
tie

s at
 a

gi
ve

n
le

ve
l o

f a
bs

tra
ct

io
n.

•
Sc

ru
tin

iz
e th

e sy
st

em
’s

 en
vi

ro
nm

en
t to

 pro
du

ce

cl
as

se
s a

nd
 o

bj
ec

ts.
•

Pa
rti

tio
ni

ng
 th

e c
la

ss
 an

d t
he

 ob
je

ct
 st

ru
ct

ur
e i

nt
o

la
rg

er
 u

ni
ts

 fo
r v

ar
io

us
 a

ttr
ib

ut
es

 an
d

se
rv

ic
es

.
•

Id
en

tif
y g

en
er

al
iz

at
io

n-
sp

ec
ia

liz
at

io
n s

tru
ct

ur
e to

ca

pt
ur

e
in

he
rit

an
ce

.
1 1 __

•
D

o
do

m
ai

n
an

al
ys

is
 an

d
pr

ot
ot

yp
in

g.
•

Pe
rfo

rm
 in

cr
em

en
ta

l d
ev

el
op

m
en

t.
•

R
ec

on
ci

le
 c

on
fli

ct
in

g
se

ts
 o

f r
eq

ui
re

m
en

ts
.

•
Bu

ild
 fl

ex
ib

ili
ty

 b
y re

gu
la

r r
ev

ie
w

s.

R
eu

se
 S

ub
cl

as
se

s

So
ftw

ar
e

co
m

po
ne

nt
re

us
e

So
ftw

ar
e

a r
ch

ite
ct

u r
e/

de
si

gn
 re

us
e

So
ftw

a r
e

re
q u

i re
m

en
 t

re
us

e

i

S.
 N

o.

- 2. 3.

•)

126

www.manaraa.com

O
nt

ol
og

ic
al

 R
eu

se

•
G

en
er

at
e imp

le
m

en
ta

tio
n for

th
e Kno

w
le

dg
e

Pr
oc

es
so

r.
•

Im
po

rt /ex
po

rt mo
de

l elem
en

ts fro
m

 /to
th

e
R

ep
os

ito
ry

.
•

G
en

er
at

e
a g

en
er

ic
 T

as
k

fro
m

 th
e

O
nt

ol
og

y.
•

Fi
nd

 an
 im

pl
em

en
ta

tio
n

fr
om

 a
 R

ep
os

ito
ry

.

•
B

as
ed

 on
op

en
-s

ou
rc

e co
m

po
ne

nt
s an

d w
ill

 be
pu

bl
ish

ed
 as

 o
pe

n-
so

ur
ce

.
•

Su
pp

or
t intero

pe
ra

bi
lit

y,
 and

sta
nd

ar
d-

ba
se

d
so

lu
tio

ns
 ar

e
pr

ef
er

re
d.

•
R

ea
dy

m
ad

e
To

ol
-le

ve
l e

xt
en

sib
ili

ty
.

•
A

ut
om

at
in

g th
e pro

ce
ss

 of
cr

ea
tin

g ap
pl

ic
at

io
n

on
to

lo
gi

es
.

•
Pr

ov
id

e me
an

s for
 visu

al
iz

in
g,

 brow
sin

g and
ex

pl
or

in
g

do
m

ai
n.

O
bj

ec
t o

ri
en

te
d

R
eu

se

•
R

ec
og

ni
tio

n
of

 ob
je

ct
s a

nd
 o

pe
ra

tio
ns

.
•

G
ro

up
in

g
th

e
ob

je
ct

s a
nd

 o
pe

ra
tio

ns
.

•
Pr

es
en

ts
 th

e
pi

ct
og

ra
ph

ic
 d

es
cr

ip
tio

n
of

 ob
je

ct
s.

•
Ju

st
ify

in
g

th
e

de
si

gn
 d

ec
is

io
ns

.

•
Pr

ov
id

es
 dia

gr
am

 of
ea

ch
 cla

ss
 hie

ra
rc

hy
 and

co

lla
bo

ra
tio

n
fo

r e
ac

h
su

bs
ys

te
m

.
•

Sp
ec

ifi
es

 co
nt

ra
ct

s su
pp

or
te

d b
y e

ac
h c

la
ss

 an
d

su
bs

ys
te

m
.

•
Pr

es
en

ts
co

m
pu

ta
tio

na
l d

es
cr

ip
tio

n o
f e

ac
h p

ub
lic

ob

je
ct

 m
od

ul
e.

•
Sp

ec
ify

 a s
et

 of
ba

sic
 buil

di
ng

 bloc
ks

 for
co

ns
tru

ct
in

g
pr

im
iti

ve
 te

rm
s.

•
D

ef
in

e t
he

 se
t o

f c
on

si
st

en
t s

ym
bo

l s
tru

ct
ur

e
st

at
es

,
or

 ch
an

ge
s o

f s
ta

te
s a

cc
om

pa
ni

ed
 by

 in
te

rp
re

ta
tio

n
ru

le
s a

nd
 u

sa
ge

 g
ui

de
lin

es
.

R
eu

se
 S

ub
cl

as
se

s

So
ftw

ar
e p

ro
ce

ss
 re

us
e

So
ftw

ar
e

te
ch

no
lo

gy
re

us
e

!

So
ftw

ar
e

ex
pe

ri
en

ce
re

us
e

S.
 N

o.

4. 5. 6.

127

www.manaraa.com

subclass concerned with a search for components that supply the functionality

needed by the user. Next, Software Architecture/ Design Reuse subclass claims to

be more than just component reuse since it is one of the software elements to be

reused during the software process. Software Requirements Reuse subclass is

about sharing the requirements across various domains. Software Process Reuse is

a kind of reuse deals with the construction of reusable software processes as a

means of improving the organization’s software process. To investigate the

application domains of software technologies the Software Technology Reuse

subclass has been devised. Software Experiences Reuse describes the methods

that try to reuse every useful experience in software systems development.

5.5.3 Case Study

It is vital to practice OnR in software development for the precise

granularity and for a high level of stability as indicated in Table 5.4. OOR

practiced on domain level which restrains basic terms of a domain that combined

and extended in OnR in order to describe more complex semantics. We consider

Hydrology Plant Management System to observe effective use of reuse subclasses

during OnR. The system is developed to formalize the concepts associated with it

such as water level measurement, water body type and water discharge

management. Water level measurement deals with required amount of water to

initiate the working of plant and convert the hydro energy into electric energy. It

is stated that every water body such as sea, river, pond etc. has a water level and a

discharge and these qualities can be observed and managed for its use in plant.

This general description provides an entry point for Software Requirement Reuse

subclass. While, representation for specific water level measurement service is

then sanctified at Software Process Reuse subclass. In particular, sea water level

has to be higher than river or pond water level as sea water has more

impurities than the others. Therefore, OnR offers a knowledge driven

approach for dealing with such diversity.

128

www.manaraa.com

Once the domain level is settled, components can be added or removed

without the need of modifications on domain level which makes the application

level highly flexible and consequently referred to Software Component Reuse

subclass. The commitment to the same domain level makes OnR comparable with

OOR. Also, the task of constructing application lies in the responsibility of the

provider of the information source whereas the construction of domain knowledge

is a joint effort of domain experts that propose Software Experience Reuse

subclass. Additionally, all other peculiarities related to specific water level

measurement are described at Software Technology Reuse subclass. This includes

legal information to use the provided information and data representation issues.

The concepts used to describe the knowledge acquisition and exchange aspects

are taken from other types of domain such as measurement or data representation

ontologies that constitute Software Architecture/ Design Reuse subclass.

As stated earlier that OOR caters at domain level only. Hence, it enables

to extend the features of a particular application using various reuse subclasses

and thus, restricted to that application only. For example, while developing

Hydrology Plant Management System, OOR helps to add water harvest

mechanism for utilization of waste water using reuse subclasses. Whereas, OnR

caters at inter-domain level and hence enables to develop different applications

with the help of various reuse subclasses. For example, Solar Plant Management

System can be developed using OnR that converts solar energy into electric

energy using the knowledge of Water Plant Management System.

It includes the concepts such as solar power level measurement, solar energy

source and release management.

5.5.4 Benefits of Ontological Reuse (OnR)

OnR achieves some lucidness of unclear concepts related with software

reuse. A significant aspect of OnR suggests its independence from

implementations or technological aspects. OnR allocates various software reuse

subclasses with ensuing benefits such as;

129

www.manaraa.com

• Cost reduction: II helps to reduce cost in terms of smaller number of

software requirements specification, design, implementation and validation.

• Higher reliability and quality: OnR provides higher reliability and quality

by components that are tested in previously functioning systems and thus are

more reliable than new ones.

• Risk reduction: OnR reduces the risk factor as previously existing process

implies determines lesser degree of uncertainty a with respect to cost

estimation for the project.

• Accelerated system development: OnR provides software architecture/ or

design reuse that facilitates in shorter development and validation times.

• Effective use of specialists: Instead of application specialists doing the same

work in different projects, OnR helps these specialists to develop software that

encapsulates the associated knowledge.

130

www.manaraa.com

5.6 Summary

In this Chapter, we have highlighted the importance of reusability in

software development process. Chapter starts with depiction of existing reuse

subclasses followed by introduction of Object Oriented and Ontological Reuse

process. As ontology based reuse is an emerging aspect and specially used for

resolving scalability and heterogeneity issues. In this view, we have proposed

reusable framework OntoP4ViewReuse based on ontology oriented systematic

P4View approach for reusing. The necessity of P4View approach is to make

available ontological knowledge that is implicitly tailored to specific application

needs. OntoP4ViewReuse bring about to apply the ontology of varying levels such

as high level, domain, task and application ontology. This cataloging of

ontologies is useful for the development of reusable and high-quality software

systems. Consequently, we have explored a range of benefits of using

OntoP4ViewReuse. In addition, to build a common conceptual base characterized

by knowledge, Ontology Based Reuse Algorithm (OntoReuseAlgo) for process

planning has been proposed. It has supported the application through system

element classification, ontolayering principal and knowledge reuse scheme. Also,

the significant benefits of OntoReuseAlgo have been drawn. In addition,

Ontological Reuse (OnR) has been devised from Object-Oriented Reuse (OOR)

and effectiveness of OnR has been highlighted with comparative study based on

software component, architecture, requirement, process, technology and

experience reuse subclasses. Lastly, benefits of OnR have been delineated.

131

www.manaraa.com

CHAPTER 6

Ontology Oriented Software
Reliability Quantification

6.1 Introduction

Software reliability has become progressively more important since the

rate of software application crashes grows and as these crashes increasingly

impact software performance. Software reliability is defined as the probability of

failure-free software operation for a specified period of time in a specified

environment [CG07, CMI07], Hence, it expresses the continuity of correct service

delivery. It is a multi-dimensional property including other customer satisfaction

factors such as functionality, usability, performance, serviceability and

maintainability etc. Also, software reliability is generally accepted as the major

factor since it quantifies software failures, which can make a powerful system

inoperative. It is found that achieving highly reliable software from the

customer’s perspective is a challenging task for all software engineers and

reliability engineers [GLT98, HM01],

In view of this, various techniques have been proposed to trap the software

reliability achievement problems based on software fault lifecycle that includes

fault prevention, fault removal, fault tolerance and fault forecasting. Fault

prevention is the initial defensive mechanism against unreliability that avoids

fault occurrences. But, fault prevention mechanisms cannot guarantee avoidance

of all software faults. When faults are injected into the software, fault removal

becomes mandatory for protection. It detects fault by verification and validation,

and at the same time eliminates them. Next, fault tolerance provides service

complying with the specification in spite of faults having occurred or occurring.

Lastly, fault forecasting estimates the presence of faults and the occurrences and

consequences of failures and becomes main focus of software reliability

132

www.manaraa.com

modelling. Reliability models are typically based on

measurement-based models [GPT01, GPM+01], These models employed in

isolation at the later stage of the software development process. On the other

hand, early software reliability prediction models are often insufficiently formal

to be analyzable and not usually connected to the target system [GPH+05],

Accordingly, there exists need for effective software reliability

achievement techniques to improve reliability from product and process aspects

that can be certified, generalized and refined. Thus, we introduce Ontology

Oriented Reliability (OnO-Reliability) development that enhances each phase of

Object-Oriented Reliability (OO-Reliability) development. Next, ontology based

protocol OntoReliability for developing specifications is suggested that leverages

reliability analysis in early stages of software development. It is practised by

taking into account the meta level structure elicited in the requirements phase.

Lastly, we quantify reliability using Ontological Reliability Quantification

Method (ORQM). This method provides means to accomplish empirical value to

reliability of various projects by identifying the architectural styles such as

communication, deployment, domain-driven and structure.

6.2 Background

Traditionally, software reliability quantifies software failures, which can

make a powerful system inoperative [LYU07], The study of reliability for the

quantification of the operational behaviour of software systems with respect to

user requirements is defined as software reliability development [LYU07], The

classic software reliability development process follows the elicitation of four

major steps namely; reliability objective, operational profile, reliability modelling

and reliability validation. A reliability objective relates to the reliability goal of

the software is from the viewpoint of the customer. This reliability objective is

related to kind of system failure the user wants to measure. For this purpose, a

well defined view of failure classification has been be made. These failures can be

permanent, transient, recoverable and corrupting. For each class of failure

133

www.manaraa.com

identified, the reliability requirement then be defined using an appropriate

reliability metric. For instance, a system that can recover without operator

intervention could have its reliability measured by the intensity that a failure

causes inconvenience to the user [SOMOl].

The operational profile relates to the information obtained through the

system operation on a certain environment. The construction of an operational

profile is important in order to select test cases according to the usage of the

system [LYU96], This is related to concept that the software reliability is affected

by software failures [SOMOl]. Also, the importance of operational profile is

endorsed by the fact that software reliability is tightly related to the environment

where the software is being executed. In particular, a software component relies

on various software and hardware resources to be deployed. Software resources

comprise those software elements required to execute a component, such as

operating systems, middleware, databases and so on. If during the execution of a

software component a resource fails, the component requiring that resource will

automatically fail, unless fault tolerance techniques are applied.

Reliability modelling is essential to the reliability prediction and

estimation process. Most of the reliability modelling approaches attempt to

predict software reliability in the later stages of the life cycle [KM97, KMY91].

The most successful techniques in the literature are probably those classified as

Software Reliability Growth Models (SRGM). Those models have been widely

used to predict reliability in the later phase of software by modelling the number

of faults and the failure rate as testing progresses. As result of those testing, it is

expected a growth in the reliability. Some SRGMs can also be used to estimate

software reliability by adding other important factors that affect final software

quality. The software reliability estimation determines if a product meets its

reliability objective and is ready for release [LHC+05]. To carry this out, failure

data should be collected during system testing which are then fit into a reliability

model. Although a wide number of reliability models can be found, it is sufficient

to consider a dozen models, which provide various estimates of software

reliability [GUA98]. It is important, though, that the number of tests

134

www.manaraa.com

executed is enough in order to have a reasonable confidence over the

estimated values [KM97], Alternatively, a usage model with a population set that

properly characterizes the system can be used [BL75, TRA95], Using these

statistical methods, the best estimates of reliability are obtained

during testing [LYU96]. If the reliability objective is not met, more testing will be

applied in an iterative process. The last part concerning the software reliability

development process consists of the reliability validation. The validation of the

system is dependent on the nature of the system. But, in general it consists in

monitoring or observing the faults and their consequent failures. Statically, the

detected errors can then be eliminated through testing techniques.

6.3 Ontology Oriented Reliability

Basically, reliability accomplishment in software systems is essential to

promote software excellence. Object Oriented Reliability (OO-Reliability)

development practices are rapidly adopted to address this issue. But, it is observed

that OO-Reliability largely depends on conventional testing to validate

correctness of system behaviour. Also, it is not adequate to attain the needed

reliability for complex systems on account of the intrinsic incompleteness

of conventional testing. Therefore, Ontology Oriented Reliability (OnO-

Reliability) development process is stranded to extend the scope of OO-Reliability

development process and we discuss firstly OO-Reliability development process

in this section. Then after, we discuss OnO-Reliahility development process in

subsequent section. Also, some attributes related to process, product and

resources are identified for comparing OO-Reliability and OnO-Reliability

development process supported by case study. Lastly, comparative analysis OO-

Reliability and OnO-Reliability development process is depicted.

135

www.manaraa.com

6,3.1 OO-Reliability Development Process

Object Oriented Reliability (OO-Reliability) provides expected

confirmation to model-based verification techniques applied to software project.

The complexity level of these executable models are far less than the

equivalent procedure oriented programs to which these models

are translated [HM01, BMM99], Consequently, the following phases of the

OO-Reliability reduce the complexity of the system at the implementation

level and shown in Figure 6.1.

Abstraction of Implementation Details

It is observed that relationships between objects at analysis level are

represented as associations. It constructs state transitions without reference to the

internal states of objects. Thus, abstraction of implementation details separate

specification of class models and behaviour models separates

specification of data from control.

Hierarchical System Representation

Hierarchical system representation support modular designs and

encourage software developers to decompose a system into subsystems, derive

interfaces that summarize the behaviour of each system, and then

perform analysis, validation and verification, using interfaces in

place of the details of the subsystems.

Structural Design Rules

Structural design rules is a set of design rules and recommendations that

constrain the structural design of system models to conform to space modularity.

The systems become space modular when system elements can be

analyzed in isolation. It supports existing verification techniques

developed for software systems.

136

www.manaraa.com

Figure 6.1 Object Oriented Reliability Development Process

137

www.manaraa.com

6.3.2 OnO-Reliability Development Process

We propose Ontology Oriented Reliability (OnO-Reliability) development

process to explore OO-Reliability since OO-Reliability is not sufficiently

proficient to address the issues related to external world representation in the

users’ intentions. Also, it lacks in the identification of critical domains in the

application and request verification of information exchange with respect to these

critical domains. OnO-Reliability development process commenced reliability

with abet of Onto-self-ensuring recognition ordeal, Onto-multiple requests/

confirmation and Onto-immunity management routine phases as illustrated in

Figure 6.2. These are discussed as follows;

Onto-Self-ensuring Recognition Ordeal Phase

According to ordeal, the software reliability is gained by complete

know ledge representation with respect to all desires and domains that is consistent

across users. It includes knowledge developers to web interest users and build

ontology content. It controls the changes to the beliefs vigilantly with a meta level

structure specifically using ontology for contextual discrimination. Hence,

abstraction of implementation details of OO-Reliability development process

becomes the subset of it. Thus, it provides an approach of common user building

ontology so that specifications of high quality are built and reliability improved.

Onto-multiple Requests/ Confirmation Phase

It identifies critical domains in the application and request verification of

information exchange with respect to these critical domains. By incorporating

feedback loop of requests and confirmations, variations may be minimized. Also,

it helps to generate hierarchy of goals or a single goal and checks the consistency

across all subsystems and interfaces in a system. Thus, Onto-multiple Requests/

Confirmations intended to investigate potential causes and consequences during

system development and consequently improve the hierarchical system

representation of OO-Reliability development process.

138

www.manaraa.com

Fi
gu

re
 6.

2 O
nt

ol
og

y O
ri

en
te

d R
el

ia
bi

lit
y D

ev
el

op
m

en
t P

ro
ce

ss

139

www.manaraa.com

Onto-immunity Management Routine Phase

It detects violations and moderates the effectoric action during system

execution and as a result, structural design regulations are included to ensure

OO-Reliability. Onto-immunity management routines offer extension that makes

use of alternate group of instructions necessary for system accomplishment. These

routines help to acquire establishment of point during the system

execution denominated Ontoimmune point. This Ontoimmune point is responsible

for preservation of appropriate information for subsequent improvement.

Ontoimmune points are said to be active from the moment that are established

until the moment in that are discarded. Onto-immunity management routines work

for the period corresponding to interval between the establishment and

discard of Ontoimmune points.

6.3.3 Comparison of OO-Reliability and OnO-Reliability

Generally, reliability of software system depends on various attributes

such as resources, process and product [HM01]. Resource attributes refers to

human, reusable software component and environmental resources thus includes

user’s skills, software development environment. Product attributes are software

characteristics that count on software structures thereby comprised of architecture

and modelling etc. On the other hand, process attributes constitute phases,

activities and resources used during a project. Therefore, these signify software

operations, design methodologies and practices etc. Now, we discuss these

attributes for OO-Reliability and OnO-Reliability as follows:

Resource Attributes

It is observed that resource attributes of the software system are

considered as a major factor in reliability achievement. During OO-Reliability

achievement resource attributes expresses the user types, external systems, and

the system itself restricted to that domain whereas OnO-Reliability determines list

of user types, external systems, and the system by considering all related domains

to acquire knowledge and thus helps in improving the scope of OO-Reliability.

140

www.manaraa.com

Product Attributes

Product attributes of OO-Reliability such as architecture restricted to view

level such as concepts and components required for candidate system while in

OnO-Reliability focused on style level and thus include communication,

deployment, domain and structure based architectures. Next, OO-Reliability

refers object modelling and class modelling whereas OnO-Reliability follows

architecture style modelling.

Process Attributes

Process attributes refer to component consistency checking mechanisms in

OO-Reliability while domain consistency checking mechanisms is preferred in

OnO-Reliability. Subsequently, OO-Reliability follows OOSDLC to achieve

reliability whereas OOLC is desired in OnO-Reliability.

6.3.4 Case Study and Comparative Analysis

We present a case study to observe the differences between OO-Reliability

and OnO-Reliability on the basis of resource, product and process attributes. Our

case study comprises of Patient Care System (PCS). PCS is used for a reliable

document delivery between patient clients and hospitals. The main function of

PCS is to transmit health care information between hospitals (service providers)

and customers (patients). Thus, it is extremely important that PCS must possess

high reliability. While achieving OO-Reliability for PCS, the resource attributes

refer to patients as user types, hospital administration and health care information

entity sets as system. Next, product attributes signifies doctor information and

patient report generation components. Then, process attribute refers to formal

verification of components used on the basis of OOSDLC such as report

generation as per tests prescribed by doctor. On the other hand, during OnO-

Reliability achievement, the resource attributes comprised of user types belongs to

different domain. Hence, user types include patients, students and guests

synonymous to passenger in Railway reservation System, Student Evaluation

system and Hotel Management system respectively. Subsequently, product

attributes include style based modelling such as PCS belongs to domain oriented

141

www.manaraa.com

architecture style and hence helps in reliability achievement in

ontological manner. Lastly, process attributes indicate OOLC

for OnO-Reliability achievement.

As discussed earlier, OO-Reliability and OnO-Reliability is developed

with same objective to obtain reliable product. OO-Reliability follows

conventional testing to validate reliability of system behaviours. On the other

hand, OnO-Reliability aims to facilitate knowledge management within internal

and external communities and support knowledge acquisition, knowledge storage,

and knowledge exchange to ensure reliable product. However, OO-Reliability and

OnO-Reliability possess equivalences based on their achievement phases. OO-

Reliability assumes re-implement the subsystem as an executable specification in

the form of an Object-Oriented Analysis (OOA) model. On the other hand, OnO-

Reliability is set of specifications acquired by common user ontology. OO-

Reliability applies model checking to OOA model to validate its behaviour at ail

possible subsystem of the system. OnO-Reliability incorporates feedback loop of

user’s request and confirmations for system validation. OO-Reliability generates

the software system by compilation of the validated and verified OOA model

whereas OnO-Reliability attempts to define consistency checking mechanism for

software system. Thus, it is analysed that use of ontology improves the reliability

to an optimum extent. OnO-Reliability includes all possible resource, product and

process attributes across all inter related domains to check the uniformity and

constancy. Hence OnO-Reliability helps in OO-Reliability advancement.

6.4 Ontological Specifications

Reliability accord scheduled prior to software development is attracting a

growing attention among software engineers and reliability experts. Software

specification decisions have a direct impact on system aspects such as overheads,

time-to-market, and quality [MUS04], This consideration results in software

reliability accord in the phase of software specification development. In this

perspective, reliability of a software system is defined as the probability that a

142

www.manaraa.com

system will perform as per its specifications [PHAOO, MH06], In addition, all

required characteristics of the software to be implemented are determined by

specifications. Thus, it becomes the starting point of any software development

process. Specifications are also an important means of communication between

users and developers. Since ontology is the explicit specialization of

conceptualization that describes domain knowledge, is widely applicable in

software reliability engineering [WSOO]. Consequently, OntoReliability protocol

is proposed to serve as an evolutionary approach for software reliability

advancement and is discussed in detail in subsequent section. It describes

concepts that are endorsed by users, during specification phase in software

engineering. Accordingly, faulty knowledge representation is incised and the

approved knowledge by most users can be acquired.

6.4.1 OntoReliability Protocol

We propose OntoReliability protocol for developing software

specifications in order to improve the software reliability as shown in Figure 6.3.

For an immediate reflection of the consequences of the specifications and for an

early substantiation, specifications must be more accomplishable. OntoReliability

protocol makes specifications an optimal communication mode between users and

developers for the intended system behaviour discussion. It integrates five

specifications ranging from OntoRelSpecificationsl to OntoRelSpecificationsS.

We discuss these specifications individually along with their components now.

Layer I-OntoRelSpecificatioml

It describes complete knowledge representation with respect to all desires

that must be consistent across all domain users. Therefore,

OntoRelSpecificationsl are composed of description, preconditions and post

conditions. Description is the characterization of user task that comprehensively

defines the intended purpose and enviromnent for software under development. It

fully describes the user needs that a software is expected to perform.

Subsequently, precondition is a condition or predicate that must always

be true just prior to the execution of some operation in a formal specification. If a

143

www.manaraa.com

pre-condition is violated, the effect of the particular section becomes undefined

and thus may or may not carry out its intended work. Security problems can arise

due to incorrect preconditions. Thus, preconditions are proposed in order to get

acquaintance of the existing environment autonomy, constraints and controls.

Later, the post conditions are mentioned to envisage the consequences of

specification implementation. It is a statement or statements describing the

condition that is true when the operation has completed its task. If the

operation is correct and the pre-condition(s) met, then the

post-condition is guaranteed to be true.

Later II-OntoRelSpecifications2

Layer II signifies the predicted process execution in advance along with

the alternate completing approach, if obligatory. Standard courses define the

requirements for any data or initialization sequences that are specific to a given

site, mission or operational mode. On the other hand, proxy courses specify the

site or mission-related features that should be modified to adapt the software to a

particular installation. Various attributes are taken into account while designing

the standard and proxy courses. Firstly, system does not debilitate. Next, system

may undergo several updates during the life cycle and system fixes may introduce

new problems. Then, software testing is usually incomplete due to encounter of

large number of states. In addition, standard and proxy courses specify the normal

and special operations required by the user such as various modes of operations in

the user organization. Subsequently, periods of interactive operations and periods

of unattended operations as well as data processing support functions such as

backup and recovery operations are also included.

Layer III-OntoRelSpeciJications3

Layer III illustrates the occurrence of the exception is assumed to be

immediately captured and can be automatically stored in exception repository

according to different classifications. These anticipated exceptions includes as

service unavailability, deadline expiry, external trigger and rationality violation.

In a software process, the services binding it evolve autonomously and their

145

www.manaraa.com

coupling is highly loose. Since, software processes usually have long-running

duration, some services may be invalid or the executing results of some services

are not the same as anticipated and thus termed as service unavailability. Next,

deadline expiry occurs due to incapability of monitoring the execution details of

each service. Deadline for service execution in a software process is specified to

indicate when the execution should be completed. Then, external trigger triggers

to a process execution and often used as a means of signalling the occurrence of

an event that impact on the process and requires some form of handling. Although

triggers can be anticipated at design time, it is not predictable if or when such

triggers will occur. For this reason, they are ideally suited to resolution via

exception handling. Lastly, rationality violation compose of the software process

which is bound with services must be rational. But it is not easy to ensure the

rationality of the process at design phase.

Layer IV-OntoRelSpeciflcations4

These specifications specifically focused on inclusions, primacy, and rate

of uses. The inclusions define the features that must be mentioned for ease of

users such as confining the system decision information, authentication

requisitions, and security check services. Subsequently, primacy determines the

relative necessity of requirements. Whereas, all requirements are mandatory but

some are more critical than others such as High, Medium and Low. These values

have been set to remove the off beam comprehension on the basis of users’

evaluation for particular functionalities. In addition, proper prioritization of

requirements provides schedule modification, improved customer satisfaction and

lowers the risk of cancellation. Next, rate of use indicates the unit of

measurement for specification usage.

Layer V-OntoRelSpecifications5

These specifications comprised of exceptional requirements and remarks

and concerns. The exceptional requirements specify all the software requirements

at a level of detail sufficient to enable designers to design a system to satisfy those

requirements. Every stated requirement should be externally perceivable by users,

146

www.manaraa.com

operators, or other external systems. These requirements should include at a

minimum a description of every input into the system, every output from the

system and all functions performed by the system in response to an input or in

support of an output. In addition, notes and issues contain information of a

general or explanatory nature that may be helpful, but is not mandatory for

intended use, definitions used and abbreviations used. Also, indicates changes

from previous issue but not applicable for the initial

issue. Revisions shall identify the method used to identify changes from the

previous issue in order to sustain the trustworthiness.

6.4.2 Case Studies

In this section, experimentation has been conceded using OntoReliabilty

protocol, to produce the software specifications for different applications of

various domains. It includes description, preconditions, post conditions, normal

flow, alternative flows, exceptions, inclusions, priority, frequency of uses, special

requirements and notes and issues. We have presented two case studies in this

section.

Case I- Airline Flight Reservation System (AFRS)

APRS is a web-based application that can accept client requests, list

searched results, process booking, payment, modification and cancellation to

existing reservations. Users do not have to personally go to the counter or contact

airline representatives, but only access AFRS through any browser to book their

flights. Customers have internet access to AFRS internet-based user interface to

book their flights, prefer any date and time, favor any airline as well as various

demands such as arrival time, flight class or non-stop whereas an administrator is

managing AFRS’s back-end databases. Administrator may wish to add/delete any

information in existing reservation or user registration database. Administrator

may needs to create and manage temporary views of fetched records from the

databases of airlines and airports. We have developed the specifications for

placing, change/ cancel reservation and add/ delete flight information/ user

reservations using OntoReliabilty as shown in Table 6.1, 6.2 and 6.3 respectively.

147

www.manaraa.com

Table 6.1 Specifications for Placing Reservation

OntoRelSpe
cificationsl

Description A customer accesses the AF1RS from the Internet, optionally search for
specific ticket/flight information of interest, selects ticket(s), and places
reservation.

Preconditions None
Post conditions Database of available tickets is updated to reflect items in this order.

Remaining tickets number is updated.

OntoRelSpe
cifications2

Standard course 1.0 Order a Single Ticket
• Customer uses the web interface to enter a certain query to view

flight information for a specified interest.
• System displays available flight information satisfied the query.
• Customer selects one or more items from page. Customer can

also click on a particular ticket to see the detailed information.
• System displays reservation with detailed price information

including all taxes.
• Customer confirms reservation or requests to modify reservation

(back to step 3).
• Customer specifies payment method.
• Customer indicates that reservation is complete.
• System confirms acceptance of the order.
• System sends Customer an e-mail confirming order details, price,

and additional links to access the ticket details or for potential
modification.

• System stores order in database, and updates available ticket
information (database).

Proxy course 1.1 Order multiple tickets (branch after step 8)
• Customer asks to place another reservation.
• Return to step 2.

1.2. Order the Last minute deals (after step 2)
• Customer orders the daily special from the menu.
• Return to step 5.

OntoRelSpe
cificationsS

Exceptions 1.0.E.1 Concurrent access from multiple users (when there is less
available ticket than potential users, demand surpass supply) (at step 1)

• System informs Customer that ticket no longer available.
• 2a. Customer cancels the ticket order.
• 2b. System terminates.
• 3a. Customer requests to select another ticket.
• 3b. System restarts.

1.0.E.2 Cutoff time for available ticket (the cutoff time is usually 5
hours before the departure time of the flight) (at step 1)

• System informs Customer that the cutoff time policy occurs.
• la. System denies the access to the particular ticket
information terminates.

1.2.E.1 the user input query is not reasonable (e.g. departure time is
behind arrival time) (at step 1)

• System informs Customer of right form of query to input.
• Customer changes query.

OntoRelSpe
cifications4

Includes None
Primacy High

Rate of Use Approximately 400 users, average of one usage per day
OntoRelSpe
cificationsS

Exceptional
Requirements

Customer shall be able to cancel the order at any time prior to confirming
the order.
Customer shall be able to view all tickets he reserved within the previous
six months. (Priority = medium)

Remarks and
concerns

The default time zone of departure/arrival information is the local time zone
of specific city.
If customer doesn’t need to have an account until reservation is placed.

148

www.manaraa.com

Table 6.2 Specifications for Change/ Cancel Reservation

OntoRelSpe
cijicationsl

Description Customers who have reservations in AFIRS should be able to modify or
cancel these reservations before a certain cutoff time.

Preconditions Customer is logged into AFIRS.
Post conditions Customer has placed certain actions on existing reservations.

OntoRelSpe
cificationsl

Standard course 2.0 Reservation modification or cancellation
• Customer requests to change or cancel reservation.
• System invokes Authenticate User’s Identity.
• System verifies Customer’s identity and provides the login view menu

for customer.
• Customer clicks on the reservation section and chooses one of the

reservations to modify or cancel.
• Customer confirms desire to do modification or cancellation.
• System checks the cutoff time and permit the modification/cancellation

requested by customer.
• System asks Customer to confirm his or her decision.
• System sends corresponding update information to the database of

ticket/flight information.
• System informs Customer the change and provides confirmation

number of the transaction.
Proxy course None

OntoRelSpe
cificationsi

Exceptions E.l Customer identity authentication fails (at step 2)
• System gives user two more opportunities for correct identity

authentication.
• 2a. If authentication is successful, Customer proceeds.
• 2b. If authentication fails after three tries. System notifies Customer,

logs invalid authentication attempt, and terminates.

E.2 The cutoff time policy is applied (at step 6)
• System informs Customer that he cannot make the

modification/cancellation and explains why.
• System terminates.

OntoRelSpe
cifications4

Includes Authenticate User’s Identity
Primacy High

Rate of Use Once per user on average
OntoRelSpe
cificationsS

Exceptional
Requirements

User authentication is performed per corporate standards for medium-
security applications.

Remarks and
concern

Expect low frequency of executing this use case. But relatively high
frequency during the season (Christmas)

149

www.manaraa.com

Table 6.3 Specifications for Add/ Delete Flight Information and User
Reservations

OntoRelSpe
cificationsl

Description The Administrator may modify the flight information and prices for a
specified date to reflect changes in availability or prices or to define last
minute deal. Administrators can also Add/Delete User Reservations in
some cases.

Preconditions Database already exists in the system.
Post conditions Modified database has been saved.

OntoRelSpe
cificationsl

Standard course Update/Add/Delete Flight information/User reservations
• Menu Manager requests to view the menu for specific ticket/flight

information.
• System displays the menu.
• Menu Manager modifies the menu to add new information, remove

or change items, create or change deal, or change prices, number of
seats available etc. (invoke the database management language
module through interface)

• Menu Manager requests to save the modified menu.
• System saves modified menu.
• If the change is about user reservations, send notification to users by

e-mail
Proxy course None

OntoRelSpe
cificationsS

Exceptions E.l No item exists for specified information (at step 1)
• System informs Administrator that no menu exists for the specified

date.
• System asks Administrator if he would like to add a new item.
• 3a. Administrator says yes.
• 3b. System invokes Database interface.
• 4a. Menu Manager says no.
• 4b. System terminates.

C.2 Item specified is the past information (at step 1)
• System informs Administrator that the item requested cannot be

modified.
• System terminates.

OntoRelSpe
cificationsi

Includes None
Primacy High

Rate of Use Approximately 20 times per week by one user
OntoRelSpe
cificationsS

Exceptional
Requirements

The Administrator may cancel out of the modification function at any
time. If any item has been changed, the system shall request confirmation
of the cancellation.

Remarks and
concern

If the Administrator is doing modification of certain information, that
infoimation should be temporally invisible/ inaccessible for customers.

150

www.manaraa.com

Case II- Web Accessible Alumni Database System (WAADS)

WAAD encompass numerous files and information from the Alumni

Database, as well as files on the department server system. This system is

completely web-based, linking to WAAD and the remote web server from a

standard web browser. WAAD operated from the departmental server and

connects Alum to the University Web Server. University Web Server passes

Alum to the Departmental Server. The Departmental Server then interact with

Alumni database and allows to transfer data to and from a database. The system

will consist of Alumni Home page with five selections. The first selection is to

fill out a survey. The questions on the survey will be created by a designated

faculty member. The survey asks Alum, questions concerning their degree, job

experience, how well their education prepared them for their job. This

information will be retained on the departmental server and an e-mail will be sent

to the designated faculty member as shown in Table 6.4. The second selection is

to the Entries section as illustrated in Table 6.5. There are two choices on this

page. One choice is to add a new entry. A form is presented to the Alum to be

filled in. Certain fields in the form v/ill be required, and list boxes will be used

where appropriate. A password typed twice will be required of all new entries.

Third selection of the Entries page is to update an Alum entry as depicted

in Table 6.6. A form presented allowing the Alum to enter the year of graduation

and then to select themselves from a list. A password is required before the

information presented to the Alum to be updated. The fourth selection is to search

or e-mail Alum as shown in Table 6.7. A form is presented requiring the

requested Alum’s year of graduation. The requesting Alum search a table to see

if the requested Alum is in the database, and if so non-sensitive information be

returned. At this time, Alum can select to e-mail the Alumnus or search for

another Alumnus. If Alum chooses to e-mail the Alumnus, a form is presented

for the message to be entered with the sending Alum’s name and e-mail. The

message with all necessary information forwarded to the requested Alum.

The e-mail address of the requested Alum will not be seen by the sending Alum

as a privacy measure. All pages will return the Alum to the Alumni Home Page.

151

www.manaraa.com

Table 6.4 Specifications to Access Alumni Home Page

OntoRelSpe
cificationsl

Description The Departmental Web Server is waiting on an Alum to connect
Preconditions Alum is connected to the Internet and on the Home Page

Post conditions The Alum is on the Alumni Home Page
OntoRelSpe
cificationsl

Standard course • The Alum connects to the University Web Server.
• The Alum selects the Alum link on the Home Page.
• The University Web Server passes the Alum to the Alumni Home

Page.
Proxy course • None

OntoRelSpe
cificationsl

Exceptions If there is a connection failure the Departmental Server returns to the wait
state

OntoRelSpe
cificationsd

Includes Alum authentication
Primacy High

Rate of Use Approximately 100 users, average of one usage per day
OntoRelSpe
cificationsS

Exceptional
Requirements

University Web Server sends the Alum to the Departmental Server.
Departmental Server presents the Alum with the Alumni Home Page.

Remarks and
concern

None

Table 6.5 Specifications of Survey

OntoRelSpe
cificationsl

Description The Alum chooses to fill out a survey
Preconditions The Alum is connected to the Internet and on the Alumni Home Page

Post conditions The survey record is created in the Survey Table of the Alumni Database.

OntoRelSpe
cificationsl

Standard course • The Departmental Server presents the Alum with a form.
• The Alum fills in the form and click submit
• The Departmental Server checks to see if all required fields are not empty.
• If the required fields are not empty, the Departmental Server creates a new

record then in Survey Table of the Alumni Database.
• If any of the required fields are empty, the Departmental Server returns a

message and returns the Alum to the Survey form.
• The Departmental Server returns the Alum to the Alumni Home Page

Proxy course • None

OntoRelSpe
cificationsl

Exceptions If the connection is terminated before the form is submitted, the fields are all cleared
and the Departmental Server is returned to the wait state.

OntoRelSpe
cifications4

Includes Alum authentication
Primacy High

Rate of Use Approximately 100 users, average of one usage per day
OntoRelSpe
cificationsS

Exceptional
Requirements

None

Remarks and
concern

None

152

www.manaraa.com

Table 6.6 Specifications to Create New Entry

OntoRelSpe
cijicationsl

Description The Alum chooses to create a new entry on the Entries page
Preconditions The Alum must be connected to the Internet and on the Entries page.

Post conditions A record is created in the Alumni Table of the Alumni Database.
OntoRelSpe
cijicationsl

Standard course • The Alum clicks on add a new entry.
• The Departmental Server returns a form.
• The Alum fills in the form and clicks submit.
• The Departmental Server checks to see if any required field is empty.
• If any required field is empty the Departmental Server will send a message

and return the Alum to the new entry form page.
• If no required field is empty the Departmental Server will create a new

record in the Alumni Table in the Alumni Database, and return the Alum to
the Alumni Home Page.

• The Alum may select Cancel.
• If the Alum selects Cancel, the form is cleared and the Alum is returned to

the Alumni Home page.
Proxy course • None

OntoRelSpe
cificationsS

Exceptions • If the connection is terminated before the form is submitted, the fields are
cleared and the Departmental Server is returned to the wait state.

• If the connection is terminated after the form is submitted, but before the
Alum is returned to the Alumni Home Page, the record is created in the
Alumni Table of the Alumni Database.

OntoRelSpe
ciJications4

Includes None
Primacy High

Rate of Use Approximately 100 users
OntoRelSpe
ciJicationsS

Exceptional
Requirements

None

Remarks and
concern

None

153

www.manaraa.com

Table 6.7 Specifications to Update an Entry

OntoRelSpe
dficationsl

Description The Alum chooses to update an existing entry in the Alumni Database
Preconditions The Alum must be connected to the Internet and on the Entries Page.

Post conditions The record in the Alumni Table of the Alumni Database has been updated and the
Alum is returned to the Alumni Home Page.

OntoRelSpe
dficationsl

Standard course • The Alum clicks on update an entry link.
• The Departmental Server returns a form.
• The Alum enters his/her year of graduation.
• The Departmental Server queries the Alumni Database for that particular

year and returns a table of all graduates from that year in a form with radio
buttons and requesting their password.

• If the password does not match the Departmental Server returns a message
and allows the Alum to try again.

• If after 3 tries the password does not match, the Departmental Server will
return a message telling the Alum to contact the designated faculty member
to receive their password.

• If the password matches go to 8.
• The Departmental Server returns a form with the data for that Alum in it

and a message to update the data they wish and click submit.
• The Departmental Server with replaces the old data with the new data and

returns the Alum to the Alumni Home Page.
Proxy course • If after three attempts to match the name and password the Departmental

Server will return a message and block the Alum from the update section.

OntoRelSpe
dficationsl

Exceptions • If the connection is terminated before the form is submitted, the fields are
cleared and the Departmental Servo- is returned to the w»ait state.

• If the connection is terminated after the form is submitted, but before the
Alum is returned to the Alumni Home Page, the record in the Alumni Table
of the Alumni Database is updated and the Departmental Server is returned
to the wait state

OntoRelSpe
dfications4

Includes None
Primacy High

Rate of Use None
OntoRelSpe
dficationsS

Exceptional
Requirements

None

Remarks and
concern

None

154

www.manaraa.com

Table 6.8 Specifications for Searching an Alumni/ E-mail an Alumni Entry

OntoRelSpe
cificationsl

Description The Alum chooses to search/e-mail Alum.

Preconditions The Alum is connected to the Internet and on the Alumni Home Page.
Post conditions The Alum receives the information on the requested Alum, receives e-mail

confirmation message, or is returned to the Alumni Home Page

OntoRelSpe
cifications2

Standard course • The Alum clicks on e-mail an alumni link.
• The Departmental Server returns a form.
• The Alum fills in the form and clicks submit.
• The Departmental Server checks to see if any required fields are empty.
• If any required fields are empty the Departmental Server returns a message

and the form.
• If none of the required fields are empty the Departmental Server queries the

Alumni Database for the requested Alum's entry.
• The Departmental Server returns the non-private information on the

requested Alum and a message stating if the requested Alum will accept e-
mails.

• If the requested Alum is not in the Alumni Database, the Departmental
Server returns a message and the Alum is returned to the Home Page.

• If the requested Alum will accept e-mails, the Alum can select E-mail this
Alum.

• If not the Alum can select Search tor another Alum or return to Alumni
Home Page.

• If the Alum chooses to Search for Alum go to step 2.
• If the Alum selects return to Alumni Home Page the Departmental Server

returns the Alum to the Alumni Home Page.
• The Departmental Server presents the Alum with a form to fill out and a

place for the message.
• The Alum selects send.
• The Department Server will forward the e-mail with all necessary

information to the requested Alum.
• The Departmental Server returns a message and returns the Alum to the

Alumni Home Page
Proxy course • None

OntoRelSpe
cificationsi

Exceptions • If the connection is terminated before the information is returned, the
Departmental Server is returned to the wait state.

• If the connection is terminated after the information is returned, the
Departmental Server is returned to the wait state

OntoRelSpe
cifications4

Includes None
Primacy Medium

Rate of Use None
OntoRelSpe
cificationsS

Exceptional
Requirements

None

Remarks and
concern

None

155

www.manaraa.com

6.4.3 Benefits of OntoReliabilty protocol

The following statements recapitulate the use of OntoRelSpecifications

developed using OntoReliabilty protocol.

• OntoRelSpecifications allow demonstrating the behavior of a software

system before it is actually implemented. These reflect three positive

consequences for software development. Firstly, executable components

are much earlier available than in the traditional life-cycle. Therefore

validation errors can be corrected immediately without incurring costly

redevelopment. Next, requirements that are initially unclear can be

clarified and completed by hands-on experience with the executable

specifications. Then, execution of the specification supplements inspection

and reasoning as means for validation. This is especially important for the

validation of non-functional behavior.

• OntoRelSpecifications are constructive, these explicitly do not only

demand the existence of a solution, conversely actually construct it.

• OntoRelSpecifications do not necessarily constrain the choice of

possible implementations because only minimal design

and implementation decisions are necessary to get executability. In

addition, these decisions are revisable.

6.5 Software Reliability Quantification

Software reliability quantification plays a very significant role for

software consistency and excellence. However, the conventional software

quantification method mostly focuses on evaluation by use of failure data which is

gained only after testing or usage in the late phase of the software life cycle. We

use ontology to obtain and quantify the software reliability with the help of

software architecture style. Ontology allows developers and users to better

understand software architecture and reliability terminologies. Therefore, an

Ontological Reliability Quantification Method (ORQM) is instigated that focuses

on various software categories correlative with architecture style and concerned

156

www.manaraa.com

class of project parameters. Now, we describe these parameters with terms

required for reliability quantification, ORQM and case studies to demonstrate the

viability of this method.

6.5.1 Terminology

Our Ontological Reliability Quantification Method (ORQM) use some

standard terms along with some new terms needed for reliability quantification.

We discuss these terms with the suitable examples in this section.

Project Category {PC)

Project Category is defined on the basis of high level patterns and

principles commonly used for application development. For example, these

categories may include communication, deployment, domain and structured etc.

It is observed that these PCs are referred to various architectural styles. An

architectural style is a set of principles that provides an abstract framework for a

family of projects. Architectural styles can be organized by their key focus area.

Table 6.9 lists the major areas of focus and the corresponding architectural styles.

Communication category comprised of service-oriented architecture and message

bus styles. Moreover, client/server and n-tier architecture styles are included in

deployment category and domain driven design is included into domain category.

Lastly, structure category constitutes component-based and layered architecture.

Project Parameters

Individual project attributes that affect reliability quantification in a

project are known as project parameters.

For example, domain alignment, abstraction and interoperability etc. may

be considered as project parameters since these affect the run time behaviour of

project. Other parameters such as autonomous, distributable, authentication and

authorization etc. also play critical role in key design principles and centralized

implementation. Thus, we have classified project parameters affecting reliability

in three classes mainly; quality attributes, devise ideologies and crosscutting

concerns and described these classes as follows:

157

www.manaraa.com

Table 6.9: Various Project Categories with Architecture Styles

Category Architecture
style

Description

Communication Service-
Oriented
Architecture

Refers to applications that expose and
consume functionality as a service using
contracts and messages.

Message Bus Prescribes use of a software system that
can receive and send messages using
one or more communication channels,
so that applications can interact without
needing to know specific details about
each other.

Deployment Client/Server Segregates the system into two
applications, where the client makes
requests to the server. In many cases,
the server is a database with application
logic represented as stored procedures.

N-Tier / 3-Tier Segregates functionality into separate
segments in much the same way as the
layered style, but with each segment
being a tier located on a physically
separate computer.

Domain Domain
Driven Design

Focused on modelling a business
domain and defining business objects
based on entities within the business
domain.

Structure Component-
Based
Architecture

Decomposes application design into
reusable functional or logical
components that expose well-defined
communication interfaces.

Layered
Architecture

Partitions the concerns of the
application into stacked groups.

158

www.manaraa.com

Quality Attributes (Q)

It is defined as the overall factors that affect run-time behavior, system

design and user experience. There exist various kinds of quality attributes

depending upon various project categories. Q„ i=l.... 1; represent I kinds of

quality attributes.

For example, maximum number of communication oriented projects must

consider coupling, simplicity and scalability at higher priority but not other

project category needs to consider these attributes at the same priority level as

illustrated in Appendix 6.1.

Devise Ideology (Z>)

It pertains to the key design principles using some specific criteria such as

costs minimization and maintenance requirements. There may exist various kinds

of devise ideologies. Let Dj,j=l..., m; represent m kinds of devise ideologies.

For example, a project can have variety of devise ideologies, each with its

own specific set of constraints such as physical separation of components across

different servers, a limitation of compatibility, composition no context

specifications etc. as depicted in Appendix 6.2.

Crosscutting Concerns (C)

Crosscutting concerns are the features of a project that may apply across

all layers, components, and tiers. These are also the areas in which high-impact

design mistakes are most often made. Therefore, it represents key areas of design

that are not related to a specific application. Let Q, k=l.... n; represents n kinds

of crosscutting concerns.

Examples of crosscutting concerns include authentication, authorization,

caching, communication, configuration and exception management etc. These

crosscutting concerns vary across project categories as shown in Appendix 6.3

159

www.manaraa.com

Weights (h>)

Weight is a value assigned to each project parameter depending upon its

priority in specific type of project category. All the project parameters such as

quality attributes, devise ideologies and crosscutting concerns may have different

priorities in quantifying reliability of a project.

For example, while considering quality attributes, higher priority may be

assigned to flexibility as compared to scalability in a communication oriented

projects. On the other hand, scalability is assigned higher priority than flexibility

in deployment oriented projects. Similarly, weights may assign to devise

ideologies and crosscutting concerns.

Effective Mean (EM)

Average of weights assigned to quality attributes (Q), devise ideologies

(D) and crosscutting concerns (C) of the project is said to be an effective mean.

Deviation Factor (DF)

It is defined as the variability for every class of parameter under

consideration and is denoted by DF. For example, DF(f) for quality attributes,

DF(j) for devise ideology and DF(k) for crosscutting concerns.

Total Deviation Factor (TDF)

It is the sum of deviation factors (DPs’) corresponding to every

class of parameter.

Project Reliability (R)

It is ratio of total observed variability (TDF) captured across

class of parameters to the total ideal variability of equivalent class

of parameters (TDFideai)•

160

www.manaraa.com

6.5.2 Ontological Reliability Quantification Method (ORQM)

We propose Ontological Reliability Quantification Method (ORQM) that

includes project parameters on the basis of project category for reliability

quantification of project. We incorporate three classes of project parameters such

as quality attributes, devise ideology and crosscutting concerns which are differ in

numbers and weights as per the project category. The stepwise description of

ORQM is as follows:

Step I: Identification of project category.

User must identify the PC of current project first.

Step II: Identification of project parameters and allocation of corresponding

weights.

Identify project parameters depending on project category and assign

weights.

Step III: Computation of Effective Means (EMs) of various parameters.

EMs corresponding to each class of project parameter related to each

project /= 1,2,3,..., N are as shown in equations (6.1), (6.2) and (6.3) respectively.

EMQ(i)= \Y}a=lQii>Oi)

EMD(i) =

EMC(i) =

... (6.1)

... (6.2)

... (6.3)

Step IV: Computation of Deviation Factors (DFs) and Total Deviation Factor

(TDF) of various parameters.

DFs for each class of project parameters as well as TDF related to each

project /=1,2,3,..., N are as shown in equations (6.4), (6.5), (6.6) and (6.7)

respectively.

DFQW - -t a) - EMQ{C)f ... (6.4)

DFD(i) = - EMD(i))2 ... (6.5)

161

www.manaraa.com

DFC(i) = 7) - EMC{i)f ... (6.6)

TDF(i) = Yli=\{pFQ{i) + DFD(i) + DFC(i)) ... (6.7)

where N stands for total number of projects.

Step V: Calculation of Ideal Total Deviation Factor (TDFl(jeai) of various project

categories.

TDFideal refers to total deviation factor of an ideal project (i.e. the project

possessing all the project parameters) and calculated using equations (6.1) to

(6.7). TDFideai varies with the type of project category.

Step VI: Calculation of Project Reliability

R(i) = TDF(i) / TDFideai- ...(6.8)

We have developed program in C for computation of reliability of various

projects whose execution results are shown in Appendix 6.4.

6.5.3 Case Studies

We consider different applications to analyze results obtained from

ORQM. Our study included petite projects of four PC namely; communication,

deployment, domain and structured oriented projects. We use three classes of

project parameters namely; quality attributes, devise ideologies and crosscutting

concerns corresponding to each project category.

Case I- Communication Oriented Projects

It is assumed that communication oriented PCs can accommodate many

quality attributes Qt ranging from q\ to q/o, devise ideologies Dj ranging from d/ to

d5 and crosscutting concerns Q ranging from c; to c6 as shown in Table 6.10.

Each project parameter is assigned some weight depending upon the frequency of

its occurrence in maximum number of projects of that category. For example,

domain alignment quality attribute is present in very few projects and therefore

assigned weight as 1. Whereas coupling quality attribute is present in every

project under study and hence assigned the weight as 10. Now, we consider five

devise ideologies such as autonomous, distributable, loosely coupled, share

162

www.manaraa.com

Table 6.10 Communication Oriented Projects

Q

PI P2 P3 P4 P5 P6 P7
9i Domain

Alignment
1 1 0 1 0 1 0

<\2 Abstraction 0 2 0 2 2 0 2
qs Discoverability 0 3 3 3 0 3 3
Cj4 Interoperability 0 0 4 0 0 4 4
V Rationalization 5 5 5 5 5 5 0
q6 Extensibility 6 6 6 6 6 6 6
q? Flexibility 0 0 7 7 0 7 7
qs Scalability 8 8 0 0 0 8 0
q9 Simplicity 0 0 0 0 9 0 0
qo Coupling 10 10 0 10 0 0 0

D

d, Autonomous 0 1 0 1 1 1 0
d2 Distributable 2 0 2 2 0 2 2
di Loosely coupled 3 3 3 3 3 3 3
d4 Share schema and

contract
4 4 4 4 4 0 4

d5 Compatibility 5 0 5 0 0 0 0

C

Cl Instrumentation
and logging

0 1 0 1 1 1 0

C2 Authentication. 2 2 2 0 2 2 0
C3 Authorization 3 3 3 0 3 3 0
c4 Exceptn mgmt 4 0 4 4 4 0 4
cs Communication 5 0 5 5 0 0 5
C6 Caching 0 0 6 6 0 0 0

163

www.manaraa.com

schema and contract, compatibility and hence allocate the weights ranging from 1

to 5 respectively. Then, for crosscutting concerns such as instrumentation and

logging, authentication, authorization, exception management, communication

and caching, we are assign weights ranging from 1 to 6 respectively.

We attempt to quantify reliability for communication-oriented projects Pi

to Pj using ORQM as shown in Table 6.11. Let us consider project P4 for

reliability calculation. P4 considers the quality attributes such as domain

alignment, abstraction, discoverability, rationalization, extensibility, flexibility

and coupling. Next, it contains devise ideologies namely; autonomous,

distributable, loosely coupled, share schema and contract and computability.

Lastly, instrumentation and logging, exception management, communication and

cashing are the crosscutting concerns present in project P4. The assignment of

weights is highlighted in Table 6.10. While executing ORQM for reliability

quantification, the values of EMQ{4), EMD(4), EMC{4) are calculated to be 4.86,

2.5 and 4 respectively with the equations (6.1) to (6.3). Next, DFQ(4),DFD(4)

and DFC{4) are calculated with equations (6.4) to (6.6) and the values are 8.41,

1.25 and 3.50 respectively. Subsequently, TDF{4) is calculated to be 13.16 with

the help of equation (6.7). Then, TDFueai for communication oriented projects has

been calculated using the same procedure and its value is 13.17 as highlighted in

Table 6.11. Thus, the Reliability R{4)for project P4 comes to be 0.99.

Case II- Deployment Oriented Projects

Let us consider now deployment oriented projects having illustrious

combinations of Q, from ranging from qj to q% Dj ranging from di to dj and Q

ranging from c/ to C(, as shown in Table 6.12. Quality attributes such as

maintainability, scalability, flexibility, availability, security, central access,

supportability, usability and integrity as quality attributes allocated weights

ranging from 1 to 9 respectively; devise ideologies having separation of concerns,

event based notification and delegated event handling with corresponding weights

ranging from 1 to 3; and crosscutting concerns projects possessing authentication,

164

www.manaraa.com

Ta
bl

e
6.

11
 R

el
ia

bi
lit

y
C

om
pu

ta
tio

n
of

 C
om

m
un

ic
at

io
n

O
ri

en
te

d
Pr

oj
ec

ts

*5

0.
88

83
83

0.
86

32
9

0.
77

06
91

0.
99

93
49

0.
68

79
27

0.
47

95
89

0.
33

08
02

PD
F

11
.7

0

11
.3

7

10
.1

5

13
.1

6 906 6.
32

4.
36

13
.1

7

Cr
os

sc
ut

tin
g

Co
nc

er
ns

VOo o o VO VO o o o VO

in o <n «o o o *n V)

o Tf o o t}-

u m m <n o m ro o

o CM (N <N o (N (N o <s

O — O w* — — o

D
ev

ise
 Id

eo
lo

gi
es

in O tO o O O o V)

O

m m cn ro m m m

ZP CN o (N <s o (N Oi r*

^3 O - O — - o VH

Q
ua

lit
y A

ttr
ib

ut
es

ql
O o o o 10 o o o 10

Os o o o o Ov o o OV

Oo 00 00 o o O 00 o 00

C\ o o r- r- O t" t" t'

'o VO VO VO VO VO VO VO VO

m »n m IT, m in o 1/1

pb o o O o

o m m fO o m m fo

<N o (N o N (N o (N fS

— — o o o

Pr
oj

ec
t

PI P2 P3 P4 P5 P6 P7

*54>•oec

165

www.manaraa.com

Table 6.12 Deployment Oriented Projects

Q

P8 P9 PIO Pll P12 P13 P14
H> Maintainability 1 1 1 1 1 1 1
H2 Scalability 2 0 2 0 2 0 0
Hi Flexibility 0 3 0 3 0 3 3
H-> Availability 4 4 0 4 0 4 4
Hi Security 5 5 5 5 5 0 5
H6 Central Access 6 0 6 0 6 6 6
H? Supportability 7 7 0 7 7 0 0
Hs Usability 8 8 8 8 8 8 0
H9 Integrity 0 9 9 0 0 9 9

D

dl Separation of
concerns

1 1 1 1 1 1 1

d2 Event based
notification

2 2 2 2 2 0 2

di Delegated event
handling

3 3 3 0 3 0 0

C

Cl Authentication. I 1 1 0 1 1 1
C2 Authorization 2 2 2 2 2 2 2
C3 Exceptn mgmt 0 3 3 0 3 3 0
c4 Communication 4 4 4 4 0 0 4
Cs Cryptography 5 0 0 5 0 0 0
C6 Sensitive data 6 0 0 0 0 0 6

166

www.manaraa.com

authorization, exception management, communication, cryptography and

sensitive data acquired with weights ranging from 1 to 6 respectively.

ORQM is executed for deployment-oriented projects Pg to P14 for

reliability quantification and depicted in Table 6.13. It is found that minimum

value of reliability of project is 0.59 and maximum is 0.95.

Case III- Domain Oriented Projects

While domain oriented projects are studied, it is observed that the quality

attributes such as Q{ ranging from qi to q9, devise ideologies Dj ranging from di to

ds and crosscutting concerns C* ranging from cj to cj as shown in Table 6.14 helps

to quantify project reliability. Therefore, quality attributes such as

communication, extensibility and testability etc. are weighted ranging from 1 to 9,

devise ideologies such as pensiveness, composition and legacy etc. are having

weights ranging from 1 to 5. On the other hand, crosscutting concerns such as

cashing, data validation and configuration management etc. hold weights ranging

from 1 to 5 correspondingly. Next, Pis to P21 domain-oriented projects are

considered for reliability quantification using ORQM as shown in Table 6.15. It is

established that domain oriented projects having reliability value as 0.32 for

project Pis which is minimum and 0.73 for project P20 as highlighted in Table

6.15. These values imply that the project Pis is 32% reliable whereas

project P20 is 73% reliable.

Case IV- Structured Oriented Projects

Lastly, we quantify reliability for structured oriented projects. The

required quality attributes, devise ideologies and crosscutting concerns are

observed to allocate weights. Table 6.16 illustrates Abstraction, isolation,

manageability, performance, reusability and testability etc. and possesses weight

in a order of 1 to 10. While, devise ideologies consist of reusable, replaceable, not

context specified etc. are having 1 to 5 weights correspondingly. In addition,

authentication, audit and logging and communication hold 1 to 5 weights in that

order and constitute crosscutting concerns. Finally, Table 6.17 shows ORQM

execution for P22 to P2S structured oriented projects. It is ascertained that

167

www.manaraa.com

Ta
bl

e
6.

13
 R

el
ia

bi
lit

y
C

om
pu

ta
tio

n
of

 D
ep

lo
ym

en
t O

ri
en

te
d

Pr
oj

ec
ts

Qej
I 0.

82
19

44

0.
74

99
19

0.
79

24
67

0.
71

46
78 oo

h-
00
r-
r-
o 0.

59
00

74

0.
95

35
02

1.
00

02
35

TD
F

7.
78

orz. 7.
50

a*9 7.
37

5.
59

9.
03

9.
47

Cr
os

sc
ut

tin
g

Co
nc

er
ns

'O so o o o o o SO SO

£ in o o m o o o in

C" tj- c? o Tf -

o o m m o m en o m

«N (N (N (N <N (N <s <N

o - - - O - -

D
ev

ise
Id

eo
lo

gi
es m m m o o o m

(N (N (N (N <N e <s (N

“Q - - - - - - -

Q
ua

lit
y A

ttr
ib

ut
es

Os O Os Os o O Os Os Os

00 00 00 00 00 00 o 00

tv.
Cji f- f- o f" o o t-'.

so o SO o SO SO SO SO

m in m >o m O V) in

•> Tt o o

o m o m o <*> «*} m

fN
O <N o (N o CN e o fN

- - - - - -

Pr
oj

ec
t

P8 P9

O
ld Pl

l Zld P1
3

P1
4

7*
 id

ea
!

168

www.manaraa.com

Table 6.14 Domain Oriented Projects

Q

P15 P16 P17 P18 P19 P20 P21
Hi Communication 1 0 1 1 1 1 1
qi Extensibility 2 0 2 2 2 2 0
Hi Testability 3 3 3 3 3 0 3
q4 Simplicity 4 4 0 4 0 4 0
Hi Highly cohesive 5 5 5 0 0 5 0
He Understanding 6 0 6 0 0 0 0
H? Manageability 7 0 7 0 0 0 0
H8 Integrity 0 8 0 0 8 8 8
H9 Decoupling 0 9 0 0 9 0 0

D

di Pensiveness 1 0 1 1 1 1 0
di Composition 2 2 2 2 2 2 2
d3 Legacy 3 0 0 0 0 0 3
d4 Encapsulation 4 4 0 4 0 0 4
ds Binding 0 5 0 0 0 5 5

C

Cl Cashing 1 1 1 1 0 1 0
C2 data validation 2 2 2 2 2 2 0
C3 Config. Mgmt 3 0 0 0 3 3 0
C4 Authorization 0 4 0 4 0 4 4
C5 Exceptn Mgmt 0 5 0 0 5 0 5

169

www.manaraa.com

T
ab

le
 6

.1
5

R
el

ia
bi

lit
y

C
om

pu
ta

tio
n

of
 D

om
ai

n O
ri

en
te

d
Pr

oj
ec

ts

0.
63

14
92

0.
63

79
33

0.
41

31
26

0.
32

46
89

0.
61

52
93

0.
73

92
08

0.
45

10
66

TD
F

699 6.
76

4.
38

3.
44

6.
52

7.
83 00

10
.5

9

Cr
os

sc
ut

tin
g

Co
nc

er
ns

o' o VO o o VO o VO VO

> o o o T|-

O ro o o o m o (O

o* (N (N (N N <N <s o <N

•>-« - - - O pm4 o -

D
ev

ise
 Id

eo
lo

gi
es

\ i__
__

__
__

__
__

__
__

__ O »o o O o m to VO

13 o o o

^3 ro O o o o o m m

13 <N fN <N fS (N fS (N (N

1? - O - - w* O -

Q
ua

lit
y A

ttr
ib

ut
es

o O OV o o Ov o O Ov

oo o 00 o o 00 00 00 00
tv. f" o o o o o t"-

>o VO o VO o o o o VO

»o *o VO o o m o VO

> o Tf o •*r o

m m CO <*) <o o <o (O

<N <N o (N fS (N <s o <N

- o - ▼■4 - - -

Pr
oj

ec
t

P1
5

P1
6

PI
7

P1
8

P1
9

P2
0

P2
1 1

170

www.manaraa.com

Table 6.16 Structured Oriented Projects

Q

P22 P23 P24 P25 P26 P27 P28
92 Abstraction 1 1 1 1 0 0 1
22 Isolation 2 2 0 0 0 0 2
£l Manageability 3 3 3 3 3 3 3
2i Performance 4 4 4 0 4 4 4

Reusability 5 0 0 5 5 5 0
Testability 6 0 0 6 0 0 6

9? Ease of
Deployment

7 7 0 0 0 0 7

A Reduced outlay 0 8 8 0 8 8 8
99 Ease of

development
0 0 0 0 0 9 0

2o Techcomplexity 0 0 10 10 10 0 0

D

<// Reusable 1 0 1 1 1 0 1
d2 Replaceable 2 2 2 0 2 0 2
d3 No context spec 0 3 3 3 3 3 3
d4 Independent 4 4 0 0 0 4 0
d5 High Cohesion 5 0 0 0 0 0 0

C

Cl Authentication 1 1 1 0 1 0 0
C2 Audit &logging 2 2 2 2 2 0 2
Cj Communication 0 0 0 3 3 3 0
C4 Exceptn Mgmt 4 0 0 0 0 0 0
Cs Validation 5 5 0 0 0 5 0

171

www.manaraa.com

Ta
bl

e 6
.1

7 R
el

ia
bi

lit
y

C
om

pu
ta

tio
n

of
 S

tr
uc

tu
re

d O
ri

en
te

d
Pr

oj
ec

ts

as

0.
73

46
94

1098180 0.
48

29
93

0.
51

02
04

0.
66

39
46

0.
53

95
92

0.
54

08
92

TD
F

9.
00

10
.0

3

5.
92

6.
25

8.
13

19 9 6.
63

12
.2

5

C
ro

ss
cu

tti
ng

Co
nc

er
ns

m *n o o o *n o in

o o e o o o o

o’ o o © <n to <Ti o m

£* cs ts (N <N O (N (N

o — fHS O - o o -

D
ev

ise
 Id

eo
lo

gi
es ■a1 in e o o O o o »n

-rf o o o ■'t o Tj-

^3 o ro fO m tn cn m m
*N <N M o (N o <N (N

^3 T«"H o V* - - o - -

J3
a<5
|

o e o1«N o O o O O
Os O o e o o ON O On

£ o 00 00 o 00 00 00 00

K.
f" t~" e o o o r- r-

NO e e o o o NO NO

a
a
Ol

XlSr in o e m in in o »n

> Tt 't o

m fo fO m m m m m

£» <N (S o o o o (N <N

5y> - l-H - o o - -

Pr
oj

ec
t ZZd P2

3

P2
4

P2
5

P2
6

P2
7

P2
8

P i
de

a1

172

www.manaraa.com

reliability of structured oriented projects under study varies from 0.48 to 0.81.

Project P24 has minimum reliability and 0.97 and project P23 is having maximum

reliability as highlighted in Table 6.17. These values conclude that the project P24

is 48% reliable whereas project P23 is 81% reliable.

6.5.4 Observations

Reliability quantification of software projects is an exigent job due to its

varying setting. Major challenge that lies in quantification is kind of project

categories and affecting project parameters. With the help of ORQM,

quantification may be accomplished on the basis of weight allocation to project

parameters with corresponding project categories. These are useful in identifying

the early scale of project reliability and establishing the software excellence. We

also presented four cases concerned with project categories such as

communication, deployment, domain and structure. Further, we computed certain

statistics such as effective mean EM, deviation factor DF and total deviation

factor TDF of these project cases. Further, we have computed software reliability

R of every project of various project categories. And, we have observed some

facts as follows:

• ORQM provides the facility to improve the traditional reliability checking

mechanism by considering the architecture style thereby providing the

scope of improvement in reliability estimation and the actual facts to user

and developer.

• ORQM computes minimum reliability for communication oriented

projects as 47% and maximum reliability as 99%. Thus, a direct measure

may be provided for reliability quantification for any project.

• It is observed that, reliability of most of deployment oriented projects

under study ranges from 71.4% to 79.2%. For these projects, quality

attributes such as maintainability, security and usability as well as devise

ideologies such as separation of concerns and event based notification and

crosscutting concern mainly authorization plays vital role.

173

www.manaraa.com

• ORQM quantifies maximum reliability of domain oriented project under

study as 73% and minimum as 32%. It is found that, these values are

typically less than corresponding maximum and minimum values of

reliability for other projects of different categories.

• ORQM eliminates the need of failure data and experts. Therefore, an

average project developer can quantify reliability more precisely.

• ORQM provides flexibility on number and type of vital project parameters

and project category depending on the project behavior and team makeup.

• ORQM also resolves the limitations of reliability engineering by

associating weights to each of the project parameter according to project

category.

• Ontological approach for reliability quantification of software projects

leads to a step towards the engineering practices thereby establishing the

fact that these methods are not informal methods.

174

www.manaraa.com

6.6 Summary

Software reliability achievement is a challenging task due to its

dependency on users’ perspective. We have introduced ontological approach for

reliability achievement over object-oriented approach. Then, a comparative

analysis has been presented and scope of Ontology Oriented Reliability (OnO-

Reliability) has been outlined. In addition, ontological specifications have been

developed using OntoReliability protocol. We have presented some case studies

to understand the application of OntoReliability protocol for software

specification development. Subsequently, the benefits have been discussed.

Lastly, we have attempted to quantify the reliability using various project

parameters. For the same reason, we have introduced Ontological Reliability

Quantification Method {ORQM). These project parameters vary in their number

and type as per the category of project. Therefore, we have considered the project

category as a prerequisite for computing the reliability. We conducted a study of

different project case as per the category with varying number and type of

parameters and establish the fact that ORQM generates direct empirical value for

software reliability. Finally, we conclude that ORQM is not a informal

method but found to be a highly useful in absence of reliability

experts and historical failure data.

175

www.manaraa.com

Appendix 6.1 Quality Attributes

Project Parameters
1. Quality Attributes

S. No. Quality Attributes Description

1 Domain Alignment Reuse of common services with standard interfaces. It
increases business and technology opportunities and reduces
cost.

2 Abstraction Related to autonomous services and accessed through a
formal contract.

3 Discoverability Expose descriptions that allow other applications and services
to locate them and automatically determine the interface.

4 Interoperability Ability of a system or different systems to operate
successfully by communicating and exchanging information
with other external systems written and run by external
parties. An interoperable system makes it easier to exchange
and reuse information internally as well as externally.

5 Rationalization Provide specific functionality, rather than duplicating the
functionality in number of applications.

6 Extensibility Applications can be added to or removed from the bus
without having an impact on the existing applications.

7 Flexibility Ability to change easily to match changes in business or user
requirements, simply through changes to the configuration or
parameters that control routing.

8 Scalability Multiple instances of the same application can be attached to
the bus in order to handle multiple requests at the same time.

9 Simplicity To support a single connection to the message bus instead of
multiple connections to other applications.

10 Maintainability Ability of the system to undergo changes with a degree of
ease. These changes could impact components, services,
features, and interfaces when adding or changing the
functionality, fixing errors, and meeting new business
requirements.

11 Availability Enabling systems using easily scalable components.

12 Security Capability of a system to prevent malicious or accidental
actions outside of the designed usage, and to prevent
disclosure or loss of information. A secure system aims to
protect assets and prevent unauthorized modification of
information.

13 Central Access Ease to administer to access and updates the data.

14 Supportability Ability of the system to provide information helpful for
identifying and resolving issues when it fails to work
correctly.

176

www.manaraa.com

15 Usability Defines how well the application meets the requirements of
the user and consumer by being intuitive, easy to localize and
globalize, providing good access for disabled users, and
resulting in a good overall user experience.

16 Integrity Defines the consistency and coherence of the overall design.
This includes the way that components or modules are
designed, as well as factors such as coding style and variable
naming.

17 Communication Defines to communicate business knowledge and
requirements using a common business domain language.

18 Testability Measure of how easy it is to create test criteria for the system
and its components, and to execute these tests in order to
determine if the criteria are met.

19 Highly cohesive Locating related methods and features in an object, and using
different objects for different sets of features

20 Understanding Maps the application more closely to the real world

21 Decoupling Provide alternative implementations without affecting
consumers of the interface

22 Isolation Upgrades to individual layers in order to reduce risk and
minimize impact on the overall system.

23 Performance Indication of the responsiveness of a system to execute any
action within a given time interval.

24 Reusability Defines the capability for components and subsystems to be
suitable for use in other applications and in other scenarios.
Reusability minimizes the duplication of components and
also the implementation time.

25 Ease of Deployment Replace existing versions with no impact on the other
components or the system as a whole

26 Reduced outlay Allows to spread the cost of development and maintenance

27 Ease of development Provide defined functionality, allowing development without
impacting other parts of the system

28 Techcomplexity Mitigate complexity through the use of a component
container and its services

29 Manageability Separation of core concerns helps to identify dependencies,
and organizes the code into more manageable sections.

177

www.manaraa.com

Appendix 6.2 Devise Ideologies

Project Parameters
2. Devise Ideologies

S. No. Devise Ideologies Description

1 Autonomous Each service is maintained, developed, deployed, and
versioned independently.

2 Distributable Services can be located anywhere on a network, locally or
remotely, as long as the network supports the required
communication.

3 Share schema and
contract

Services share contracts and schemas when they
communicate, not internal classes.

4 Compatibility policy Defines features such as transport, protocol, and security.

5 Separation of concerns Divide UI processing concerns into distinct roles; for
example MVC has three roles; Model, View, and
Controller. Model represents data. View represents UI; and
Controller handles requests, manipulates the model, and
performs other operations.

Event based notification Used to provide notifications to the View when data
managed by the Model changes.

7 Replaceable Components may be readily substituted with other similar
components.

8 Delegated event handling Handles events triggered from the UI controls in the View.

9 No context specification Components are designed to operate in different
environments and contexts

10 Independent Provides minimal dependencies on other components.
Therefore, components can be deployed into any
appropriate environment without affecting other
components or systems

11 Pensiveness reduce a complex operation into a generalization that retains
the base characteristics of the operation.

12 Composition Objects can be assembled from other objects, and can
choose to hide these internal objects from other classes or
expose them as simple interfaces.

13 Legacy Objects can inherit from other objects, and use functionality
in the base object or override it to implement new behavior

14 Encapsulation Expose interfaces that allow the caller to use its
functionality, and do not reveal details of the internal
processes or any internal variables or state.

15 Binding Allows to override the behavior of a base type that supports
operations in your application by implementing new types
that are interchangeable with the existing object.

178

www.manaraa.com

Appendix 6.3 Crosscutting Concerns

Project Parameters
3. Crosscutting Concerns

S. No. Crosscutting Concerns Description

1 Instrumentation and
logging

Instrument all of the business-critical and system-critical
events, and log sufficient details to recreate events in your
system without including sensitive information.

2 Authentication. Determine to authenticate users and pass authenticated
identities across the layers.

3 Authorization Ensure proper authorization with appropriate granularity
within each layer, and across trust boundaries.

4 Exception management Catch exceptions at functional, logical, and physical
boundaries; and avoid revealing sensitive information to
end users.

5 Communication Choose appropriate protocols, minimize calls across the
network, and protect sensitive data passing over the
network.

6 Caching Determine what data to cache, where to cache the data,
and a suitable expiration policy

7 Cryptography Refers to application enforces confidentiality and integrity

8 data validation Technique choose for validating on length, range, format,
and type; constrain and reject input invalid values;
sanitize potentially malicious or dangerous input

9 Configuration
Management

Determine the information configurable, to store
configuration information and to protect sensitive
configuration information,

179

www.manaraa.com

A
pp

en
di

x 6
.4

 O
RQ

M
ex

ec
ut

io
n

R
es

ul
ts as

1

880

980 0.
77

660

890 0.
47

0.
33 ©

p

TD
F

11
.7

11
.3

roi m

906 6.
32

4.
36

13
.1

D
FC 1.

25

0.
67

5.
20

3.
50

1.
25

0.
67

0.
25

2.
92

D
FD 1.

25

1.
56

3.
75

1.
25

1.
56

0.
67

0.
67

2.
00

D
FQ 9.

20

9.
14 1.
20

8.
41

6.
25

4.
98 34
4

8.
25

EM
C 3.
5 fN

2.
5 fN

4.
5

3.
5

BM
D 3.
5

2.
67 3.
5

2.
5

2.
67 fN m ro

EM
Q *0 m m 10

00
*

5.
5 ©

00 4.
4 55

Cr
os

sc
ut

tin
g

Co
nc

er
ns

'S © 0 <0 NO 0 O © ©

«n 0 «/i m © O WN

>
o

Tf O Tf O

m n © m <n O fn

z* fN fN fN O fN fN © fN

O - O - - - O -

D
ev

ise
 Id

eo
lo

gi
es

vn O m © O 0 © W1

■*r Tj- N- N- © Tf

m m m fn fO fn m m

<N 0 fN N O fN rs (N

O - 0 - - - 0 -

1
1

■a O 0 O O O O © 0

©©
O 0 0 O © O © ©

oc©
00 00 © © O 00 © 00

tv
©

O 0 r~ f- O r- r-* r*

1 96 NO >0 NO © NO © © ©

! v> m •n m v» © NT)

>
0

O O © 0 - N- TJ-

0
O m m 0 m m

fN
O

O fN 0 #N fN © fN (N

O
- - 0 - O - © -

Pr
oj

ec
t

a!

Zd P3 S P5 NO
0, P7

8
0?

O
RQ

M
 E

xe
cu

tio
n

R
es

ul
ts

 fo
r C

om
m

un
ic

at
io

n
O

ri
en

te
d

Pr
oj

ec
ts

180

www.manaraa.com

A
pp

en
di

x 6
.4

 O
RQ

M
 ex

ec
ut

io
n

R
es

ul
ts

as

0.
82

19
44

0.
74

99
19

0.
79

24
67

0.
71

46
78

0.
77

87
18

0.
59

00
74

0.
95

35
02

1.
00

02
35

TD
F

7.
78

7.
10

7.
50

6.
77

7.
37

5.
59

9.
03

9.
47

!

D
FC 3.
44

1.
25

1.
25

1.
56

0.
67

0.
67

4,
79

2.
92

D
FD

490

49 0 0.
67

0.
13

0.
67

000 0.
25 1.
67

D
FQ 3.
68

5.
19

5.
59

5.
08

6.
04

4.
92

3.
99 O'00

EM
C

3.
6

2.
5

2.
5

3.
66

66
67

fN fN

4.
33

33
33

3.
5

EM
D rs fN «N fN - sri fN

1 4.
71

42
9

5.
28

57
1

5.
16

66
7

4.
66

66
7

fOr*i00
n- 5.

16
66

7

4.
66

66
7

«r»

Cr
os

sc
ut

tin
g

Co
nc

er
ns

'S SO o © o o o >0 sO

*n o o o o ©

>o ••r o o

o m o fn o fo

rs fN fN rs fN rs <N <N

o - - - o - - - -

D
ev

ise
 Id

eo
lo

gi
es f*“> o o © f*1

<N fS fN fN fN o rs <N

Q
ua

lit
y A

ttr
ib

ut
es

o Os O' o o O' O' O'

00 00 00 00 00 00 o 00

1
Lb r- r-" © r- r- o © r-

'O SO o so o so >0 sO SO

i} *r> •n sn ws wi o

>> ■*r o O 49- -r

© o fn o ro r*“i

*N> fN o <N © fN © © <N

-

Pr
oj

ec
t

00cu P9

O
ld X PI

2

P1
3

P1
4

Pi
de

al

O
RQ

M
 E

xe
cu

tio
n

R
es

ul
ts

 fo
r

D
ep

lo
ym

en
t O

ri
en

te
d

Pr
oj

ec
ts

181

www.manaraa.com

A
pp

en
di

x 6
.4

 O
RQ

M
ex

ec
ut

io
n

R
es

ul
ts

*

0.
63

14
92

0.
63

79
33

0.
41

31
26

0.
32

46
89

0.
61

52
93

0.
73

92
08

0.
45

10
66

0000
1

TD
F

699

9L9 4.
38

3.
44

6.
52

7.
83

4.
78

10
.5

9

D
FC

001 3.
50

szo 1.
56

1.
56

2.
81

0.
38

2.
80

D
FD

69 I ©00
d 0.

13
 i 1 1

1.
17

0.
13

0.
73

690 1.
50

D
FQ

oo
-•f 2.

37

4.
00

0.
71

4.
83

4.
29

3.
71

6.
29

EM
C <N cn «n

2.
33

3.
33 2.
5

4.
5

I 2,
5

3.
66 K\

2.
3 *0

993 •n

EM
Q 5.
8

2.
5

4.
6 in

11
<3

1
3

I

e v> o o o m m

> c o O TT

**•, O o o m m o

Zo <N <N <N fS fS rs o (N

o - - - - o - o -

D
ev

ise
 Id

eo
lo

gi
es

=3
o n o o © m m n

o o o Tf

o o o o o rn m

<N fS <N fN «N fS <N rs

- o - - - - o -

1

Os»
O O' o O O' o o O'

oc9
o 00 o o oo 00 eo 00

r-v r- o f" o o o o r-

1 96 <o o s£> o o o o o

*r» *n m o o m o *r>

15 > o 't o ©

m o

*No
<N © «N rs rj rj o rs

o
— o

Pr
oj

ec
t

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

P2
1

Pi
de

al

O
RQ

M
 E

xe
cu

tio
n

R
es

ul
ts

 fo
r

D
om

ai
n

O
ri

en
te

d
Pr

oj
ec

ts

182

www.manaraa.com

A
pp

en
di

x
6.

4
O

RQ
M

 ex
ec

ut
io

n
R

es
ul

ts

0.
73

46
94

00
o 0.

48
29

93

0,
51

02
04

0.
66

39
46

0.
53

95
92

0.
54

08
92

TD
F 006

10
03

5.
92

6.
25

8.
13

199 6.
63

12
.2

5

D
EC 2.
50

2.
89

0.
25

0.
25

: 0.67 i

oox

000

i 2.00

g

2.
5

0.
66

66
67

0.
66

66
67

0.
66

66
67

0.
25

I 0.666
66

7

2.
00

Ots?
Q 4.

00

6.
47

5.
00

00S

089 5.
36

5.
96 mfN

ad

EM
C

3.
00

L9Z 1.
50

2.
50

2.
00

4.
00

2,
00

I tn to rM fN <N 3.
5 fN

Ol
kj

4.
16

66
67

j

5.
2 v~, >0 5.
8

4,
42

85
71

a

C
ro

ss
cu

tti
ng

 C
on

ce
rn

s

- - - - © © - -

> n- o © © O © c>

O
o o o r^i o

■3 rs ts fN fN fN © fN <N

- - - O - © © -

j

1

•s
4

=8 •n o o o © © o •n

rf o o o o nt

O to m f*v m «*“l tn fO

fN fN <N o <N o fN <N

- o - - _ o - -

Q
ua

lit
y A

ttr
ib

ut
es

O o o o O o o ©

% o o o © o © © On

% © 00 00 © 00 00 00 00

tv
>

r- o © © o h-

N© NO o o o © '■O ©

«r» o © «n *r> WN o V)

> ■*r o n- NT

»% to r^i «•> « ft) f*i

*N fN fN o © © o <N fN

- - - “ O © “
-

Pr
oj

ec
t

P2
2

cu P2
4 «f3fNa.

n?
a!

t"-fNa.
00fNa.

Pi
dc

al

O
RQ

M
 E

xe
cu

tio
n

R
es

ul
ts

 fo
r

St
ru

ct
ur

ed
 O

ri
en

te
d

Pr
oj

ec
ts

183

www.manaraa.com

CHAPTER 7

Ontology Based Secured Project
Development

7.1 Introduction

The key benefits of Ontology Based Projects (OBPs) lie in increasing the

abstraction and building secured software. OBPs are eulogized by software

developers and practitioners due to the knowledge-intensive features. These

projects ensure greatest ontology convention for being knowledge-intensive in

nature. Ontology refers to the terms used to describe and represent an area of

knowledge. It is observed that OBPs have achieved range of benefits by using

different knowledge representation perspectives. At the same time, while

developing OBPs from different perspectives, various side effects may occur due

to unvisualized states. These states constitute mainly uncertainty, variability,

ambiguity and complexity. At the same time, these states possess very important

functional characteristics and thereby may disfigure the project security.

However, security has been considered as an innate property of software project

and expected to be en suite [EMB04, MC06]. Consequently, effective

software security control becomes significant in OBPs due to the

expediency, flexibility and comprehensibility.

Consequently, many formal methods have been used for resolving the

security concerns in OBPs. These include Model Driven Architecture (MDA),

Model Driven Development (MDD), Model Based Testing etc. [MHG+05], These

are disciplined methods, with the incorporation of mathematically based

techniques for the specification, development, and verification of software. For

the same reason, vulnerabilities can result from functionally incorrect

implementations. Formal methods improve software security but all these formal

methods have limitations of scale and applicability in principle [FE09, MF11],

184

www.manaraa.com

Also, a formal method cannot prove that a formal specification that captures a

user’s intuitive understanding of a system and furthermore cannot prove that an

implementation runs correctly [FEN11, RK11]. In addition, formal methods

without modularization capabilities and scope-delimiting rules are difficult to use

on large systems at any but the highest level of abstraction [CHK+07]. Hence,

development of secured environment is required for OBPs. An Abstraction

Method (AM) is suggested that caters OBPs developed from various perspectives

such as generality, requirement, reuse and reliability engineering. Moreover,

benefits associated with these perspectives induce the unvisualized states and

impact security aspects of OBPs. Eventually, it leads to identify the security

factors compensating the effect of unvisualized states.

7.2 Background

We have performed a systematic study to identify the benefits obtained in

OBPs developed using different perspectives, discussed in previous chapters.

Firstly, we have developed the projects termed as Ontology Driven Information

Systems (ODISs) from the generality perspective. It has been carried out by

mapping the Object-Oriented and Ontology-Oriented SDLC [Sllla],

Furthermore, projects with requirement engineering perspective have been

developed using Ontology Aided Requirement Engineering (OntoAidedRE)

Model. It is intended to enable knowledge driven requirement engineering by

encapsulating the ontology [Slllb]. However, an Ontop4ViewReuse framework

has been developed to endow with reuse perspective in software applications.

This framework uses ontology oriented systematic P4View approach for reusing.

P4 stands for Pretence-Persuade-Problem-Product views and represent a

meticulous attribute of the ontology [SIlid]. Lastly, to grow with reliability

perspective OntoReliability Protocol has been proposed for developing Ontology

Oriented Specifications (OntoRelSpecifications) [SI12a], Now, we discuss OBPs

along with the benefits and unvisualized states incurred due to these

benefits in subsequent sub sections.

185

www.manaraa.com

7.2.1 Ontology Based Projects (OBPs)

The projects developed with ontology based mechanism are known as

Ontology Based Projects (OBPs). We have developed Ontology Based Projects

(OBPs) on the basis of aforesaid perspectives. Therefore, OBPs developed using

generality perspective refers to Generality Oriented OBPs. Subsequently,

Requirement engineering Oriented OBPs signifies OBPs developed using

requirements engineering perspective. While, OBPs build up with reusability

perspective denotes Reusability Oriented OBPs. Lastly, Reliability Oriented

OBPs specify the OBPs extended via reliability perspective. We briefly describe

the types of OBPs in this section.

7.2.1.1 Generality Oriented Ontology Based Projects

Generality Oriented Ontology Based Projects in form of GDIS describes

specification of concepts and relations that exist in the domain, definitions,

properties and constraints. Various projects from the generality perspective have

been developed by mapping Object-Oriented and Ontology-Oriented software

development life cycles as discussed in Chapter 3. Firstly, ontological approach

involves ontology development mapped with domain analysis. Next, plotting of

ontologies into object models mapped with designing infrastructure

specification. Lastly, construction and implementation mapped with

development of reusable component.

7.2.1.2 Requirement Oriented Ontology Based Projects

Requirement Oriented Ontology Based Projects aim to enable knowledge

driven requirement engineering by encapsulating ontology. OntoAidedRE,

provides the inter-relationships between different domains and multidisciplinary

environment. In addition, it emphasized on and extracted from the endeavor

depending on the requirement type. It is comprised of four layers namely;

OntoPre, Ontolnput, OntoSystem and OntoOutput requirements. OntoPre

Requirements are dedicated for the use of system whereas Ontolnput

Requirements refer to initial system qualifying terms. Then, OntoSystem

186

www.manaraa.com

Requirements have comprised of three components namely; OntoSystem

Operational, OntoSystem Control and OntoSystem Parameter Requirements.

OntoSystem Operational Requirements illustrate system access procedures and

OntoSystem Control Requirements depicts system control procedures. Next,

OntoSystem Parameter Requirements present system parameterized procedures.

Finally, OntoOutput Requirements reflects the system eventual

presentation as conferred in Chapter 4.

7.2.1.3 Reusability Oriented Ontology Based Projects

Ontop4ViewReuse framework, based on P4View approach for reusing is

developed to obtain Reusability Oriented Ontology Based Projects as discussed in

Chapter 5. It represents various types of ontology such as high level, domain, task

and application ontologies that caters Pretence, Problem, Persuade and Product

views respectively. It started with Pretence view by identification of knowledge

sources useful for the application domains, which differ both in the represented

content and in the formalization. Subsequently, an automatic translation of the

source ontologies from a common format to the representation languages has

carried out at Problem view. In addition, matching of the ensuing method is

accepted at Persuade view. Finally, the application ontologies revealed the reuse

source vocabularies to a large extent in Product view.

7.2.1.4 Reliability Oriented Ontology Based Projects

OntoReliability Protocol is suggested for developing software

specifications OntoRelSpecificationl to OntoRelSpecificationS to attain

Reliability Oriented Ontology Based Projects in Chapter 6. It improves external

world representation in the users’ intentions. Also, it controls the changes to the

beliefs vigilantly with meta level structure specifically using ontology for

contextual discrimination. OntoRelSpecificationS 1 are composed of description,

preconditions and post conditions and describes complete knowledge

representation with respect to all desires that must be consistent across all domain

users. Next, OntoRelSpecifications2 signify the predicted process execution in

advance along with the alternate completing approach. Then,

187

www.manaraa.com

OntoRelSpecifications3 illustrate the occurrence of the exception assumed to be

immediately captured and can be automatically stored in exception repository

according to different classifications. These anticipated exceptions have included

as service unavailability, deadline expiry, external trigger and rationality

violation. OntoRelspecification4 specifically focused on inclusions, priority, and

frequency of uses and OntoRelspecificationS comprised of special requirements

and notes and issues.

7.2.2 Benefits of OBPs

Ontology has been used in software development for enriching the

softwares with a range of perspectives. As discussed earlier, these perspectives

include generality, knowledge intensive requirement engineering, reusability and

reliability to build OBPs. These OBPs are acquired with various benefits and we

discuss them as follows:

Conceptual Integrity

Conceptual integrity is of the essence in system development and cannot

be easily perceived as a coherent system. The word conceptual is associated with

the cognitive process of concept formation that involves the conscious recognition

and identification of elements of our experience. However, the word integrity is

associated with the idea of ‘being one’. Hence, it defines the consistency and

coherence of the overall design. This includes the way that components or

modules are designed. In obtaining conceptual integrity, we concern with the

emergence of concepts from experience [LINK?].

Maintainability

It is the ability of a system to undergo changes with a degree of ease.

These changes could impact components, services, features, and interfaces when

adding or changing the functionality, fixing errors, and meeting new business

requirements. In addition, once a piece of system has failed it must be

possible to get it back into an operating condition as soon as possible

and termed as maintainability [BDB06],

188

www.manaraa.com

Table 7.1: Benefits associated with OBPs

S. No. Benefits Description

B1 Conceptual
Integrity

It defines the consistency and coherence of the
overall design.

B2 Maintainability It is the ability of the system to undergo
changes with a degree of ease.

B3 Recoverability It is the capability for components and
subsystems to be suitable for use in other
applications and in other scenarios.

B4 Accessibility It is the proportion of time that the system is
functional and working.

B5 Interoperability It is the ability of a system or different systems
to operate successfully by communicating and
exchanging information with other external
systems written and run by external parties.

B6 Manageability It defines how easy it is for system
administrators to manage the application,
usually through sufficient and useful
instrumentation exposed for use in monitoring
systems and for debugging and performance
tuning.

B7 Performance It is an indication of the responsiveness of a
system to execute any action within a given
time interval.

B8 Scalability It is ability of a system to either handle
increases in load without impact on the
performance of the system.

B9 Supportability It is the ability of the system to provide
information helpful for identifying and
resolving issues when it fails to work correctly.

BIO Testability It is a measure of how easy it is to create test
criteria for the system and its components, and
to execute these tests in order to determine if
the criteria are met.

Bll Usability It defines how well the application meets the
requirements of the user and consumer by
being intuitive, easy to localize and globalize.

189

www.manaraa.com

Recoverability

It specifies the capability for components and subsystems to be suitable

for use in other applications and in other scenarios. Recoverability minimizes the

duplication of components and also the implementation time [LINK?].

Accessibility

It is a property of a system that allow for the widest possible range of

users to access the software system's functionality It identifies the proportion of

time that the system is functional and working. It can be measured as a percentage

of the total system downtime over a predefined period.

Accessibility is affected by system errors, infrastructure problems, malicious

attacks, and system load [LINK?].

Interoperability

It is the ability of a system or different systems to operate successfully by

communicating and exchanging information with other external systems written

and run by external parties. An interoperable system makes it easier to exchange

and reuse information internally as well as externally [LINKS],

Manageability

It signifies how easy it is for system administrators to manage the

application, usually through sufficient and useful instrumentation exposed for use

in monitoring systems and for debugging and performance tuning [LINK?].

Performance

It is an indication of the responsiveness of a system to execute any action

within a given time interval. It can be measured in terms of Latency or

Throughput. Latency is the time taken to respond to any event and Throughput is

the number of events that take place within a given amount of time [LINK?].

Scalability

Scalability is the property of reducing or increasing the scope of methods,

processes, and management according to the problem size. It is skill of a system

190

www.manaraa.com

to either handle increases in load without impact on the performance of the

system, or the ability to be readily enlarged. And, it’s an ability for an increasing

number of users to easily share a single system [LINK7],

Supportability

It is an inherent capacity of shipped software to allow easier diagnose of

any problems in the field. In other words, it means to "be supported" in the area to

provide information helpful for identifying and resolving issues when it fails to

work correctly [LINK7].

Testability

It is a measure of how easy it is to create test criteria for the system and its

components, and to execute these tests in order to determine if the criteria are met.

Good testability makes it more likely that faults in a system can be isolated in a

timely and effective manner [LINK7],

Usability

It defines degree of application meets the requirements of the user and

consumer by being intuitive and easy to localize and globalize. It is conceived as

the most general ergonomic quality concept that applies to all kinds of interaction

between a user and a product (software) within a given context of use.

Historically, the concept of usability is defined in multiple ways such as

semantics, features and operations. In Semantic base, usability is equated to user-

friendliness, without formal definition of the properties of the construct. In

addition, in features base, usability is equated to the presence or absence of

certain features in the user interface. Lastly, operations base pursue

usability in terms of performance and affective levels manifest by

users for certain task [LINK7].

7.2.3 Unvisualized States

The problem with OBPs is that it contains numerous invisible flaws that

are often located and exploited by assailants to compromise the software’s

security and aforementioned benefits. Such exploitable flaws are referred to as

191

www.manaraa.com

unvisualized states namely; complexity, variability, ambiguity and uncertainty.

These unvisualized states are described as follows;

Complexity(C)

Complexity is the difficulty to maintain, change and understand software.

Three specific types of complexity that affect a developer's ability to comprehend

software have been identified such as problem complexity, system design

complexity, and procedural complexity. Problem complexity is a function of the

problem domain. While, System design complexity addresses the mapping of a

problem space into a given representation. Structural complexity and data

complexity are the two types of system design complexity defined for structured

systems. Structural complexity addresses the concept of coupling. Data

complexity addresses the concept of cohesion. The complexity of a system is

based on the sum of the structural and data complexity for all modules in the

system. These measures address information system complexity at the system and

module levels. Procedural complexity is associated with the logical structure of a

module. This approach to complexity measurement assumes that length of module

or the number of logical constructs that determines the complexity [YK+06].

Variability (V)

Variability is the ability of a core asset to be efficiently extended, changed,

customized, or configured for use in a particular context. Variability is divided

into external variability that is variability of domain artefacts that is visible to

users and internal variability is the variability of domain artefacts that is hidden

from users. Both external and internal variability are important to the success of

developing software system. However, external variability is important as it is

visible to users and relates to requirements defined at early

development stages where errors or inaccuracies are relatively

inexpensive and easy to detect and correct [MJJ06].

192

www.manaraa.com

Table 7.2: Unvisualized States incurred in OBPs

Unvisualized state Description

Complexity(C) It refers to the variety or diversity of some

aspect of a task, such as number and diversity

of inputs and/or outputs, number o f separate

and different actions or tasks to produce the

end product of a project and number of

specialties involved on a project.

Variability (V) It is the ability of an asset to be efficiently

extended, changed, customized or configured

for use in a specific context.

Ambiguity (A) It is defined as the inability to recognize and

articulate relevant erratic term and their

functional relationship.

Uncertainty (U) It signifies the absence of information about a

given jeopardy, which in turn leads to the

inability to accurately predict the outcome of a

given system

193

www.manaraa.com

Uncertainty (U)

It is a state of not knowing or not realizing and described as totally

unforeseen, not expected to happen and not imaginable. Uncertainty has been

categorized along four dimensions such as variation, foreseen uncertainty,

unforeseen uncertainty and chaos or turbulence. Variation in activity durations,

costs and the exact performance level delivered by resources is a common source

of project uncertainty. This implies that the nature and sequence of the relevant

activities as well as the objectives of the project are well known. Thus, project

plan is detailed and stable but project schedules and budgets exhibit variation

around the projected values. However, foreseen uncertainties are identified, but

uncertain influences in a project. Unforeseen uncertainty is not formally identified

in project planning stage, specifically, it is not anticipated. Chaos or

turbulence refers to the fundamental uncertainty about the basic structure of the

project plan itself [MF11],

Ambiguity (A)

Ambiguity indicates causing perplexity or indecision. In the same way,

during software project development, ambiguity admits more than one possible

interpretation. Ambiguity is notably incompatible with the goal of

producing deterministic software and covers lexical, syntactic,

vagueness and language errors [MGM03].

7.3 Secured Software Environment for OBPs

Secured software environment defines software environment that is able to

resist most assails, and helps a software to recover quickly with a minimum of

damage from the very few assails that it cannot tolerate. There exists three main

objectives of assails on software such as these either try to sabotage the software

by causing it to fail by modifying it or by executing malicious logic embedded in

it. Next, it may become unavailable by subverting software or by changing its

operations. Lastly, to learn more about the software’s operation and environment

194

www.manaraa.com

so that software can be targeted more effectively. The subversion and sabotage of

software always results in the violation of the software’s security as well as

other benefits associated with the software. Thus, we describe related security

attributes as follows;

Role Definition

It is defined as the ability to clearly assign and monitor roles to the people

involved in the project. These roles constitute Leader, Member and Contributor.

Project team leader is a person provides leadership and guidance to the team and

takes responsibility for results of teamwork. Team leader role involves

development and encouragement of the team through training, leading,

motivation, recognition, rewarding and other activities that stimulate or force

team members to do the required tasks. However, a project team member

involved in doing assigned tasks. Team members directly access the project and

actively evolve its processes and subordinated to the team leader. Lastly, a project

team contributor is a person or an organization that participates in teamwork but

is not actually involved in performing tasks and carrying out project team

responsibilities. Contributors help to improve project through giving valued

suggestions, expert judgment and consultation and are not responsible

for the project results [MAR03].

Intricacy

Intricacy or project intricacy statement is a means used to describe the

major expected outputs of a project including the key milestones, high level

requirements, assumptions, and exclusions. Key milestones are zero-duration

events that mark progress across the project timeline. Furthermore, high Level

requirements are the specifications for the project described at a summary level

and usually include a technical description. At last, assumptions and exclusions

are the specific disclaimers and decisions about the project that are used

to clarify project scope [MF11],

195

www.manaraa.com

Table 7.3: Required Security Attributes in OBPs

S. No. Security Attributes Description

1 Role definition It is defined as the ability to clearly assign and
monitor roles to the people involved in the project.

2 Intricacy It signifies the magnitude or the scope of the
project.

3 Technology
acquisition

It concerns the sum of new hardware and software,
as well as the number of vendors involved.

4 Resources These refer to both finance and effort assets
allocated to the project.

5 Expertise It is the ability to define the purpose of the project,
and to provide consistent working principles.

6 Methodology It is the set of guidelines and skills required to
design, develop and implement the project.

7 User Support It is the amount represented by a combination of
level of user enthusiasm, user preparedness for the
new system, and level of user feedback.

8 User Experience It consists of a blend of tacit knowledge and
historical project repositories relevant to the
current project.

9 User Conflicts It considers poor communication or hostility
between user and designer team members.

10 Size It refers to the number people involved in the
project.

11 Review It illustrates the set of precautionary, threat based
and leverage based schemes.

12 Personnel Changes It is the degree of dynamicity in involved IS
development personnel.

196

www.manaraa.com

Technology Acquisition

Technology acquisitions provide technological inputs to the acquiring

system. Accordingly, potentially expand the acquirer’s knowledge base and

provide scale, scope, and recombination benefits. However, technology

acquisitions entail a disruption in organizational routines. Further, this disruption

is most likely in the set of routines that are closest to the technological subsystem

of system. Thus, technological acquisitions can also have a negative impact on the

innovation output of the acquirers. On balance, assessing whether technological

acquisitions have a positive or negative impact on post acquisition innovation

output is likely to depend upon the quantity and nature of knowledge elements

that they bring to the acquiring system [LINK?].

Resources

These refer to both finance and effort assets allocated to the project such

as time, human resources, computer resources and money. Resources can be

viewed from three standpoints such as availability, elastic and plastic, shared and

dedicated. Available resources include human resources that are available in the

same quantity day-after-day and spending these resources does not deplete them.

Next, elastic Resources imply the supply can be increased or decreased such as

human resources and money whereas plastic resources supply cannot be extended

such as time. Lastly, shared resources are needed for short durations but utilized

for the entire duration of the project such as DBAs and functional specialists etc.

and dedicated resources should be dedicated to the project for the required

duration such as computer systems, and programmers [MF11].

Expertise

It is the ability to define the purpose of project, and to provide consistent

working principles. It makes available with the analysis of the existing functional

and operational aspects along with technological and architectural analysis. Also,

it supports in writing of the mock-up process, security recommendations and

requirements. Besides, it is assistance to the definition and to the enhancement of

the physical security (access) in accordance with the different types of involved

197

www.manaraa.com

people and security areas. Consequently, it holds up to the implementation of a

standard regarding to the nomenclature and the management of the different

equipment of the information system [RHT+01].

Methodology

It is a structure or a plan that controls process of developing information

system and includes the pre-definition of specific deliverables and artefacts that

are created and completed by a project team to develop or maintain an

application. One software development methodology is not necessarily suitable

for use by all projects. Each of the available methodologies is best suited to

specific kinds of projects, based on various technical, organizational,

project and team considerations [RK11],

User Support

It is the amount represented by a combination of level of user enthusiasm,

user preparedness for the new system, and level of user feedback. User support

provides application program supported by performing installation, configuration,

and software maintenance of existing application programs. Subsequently, it

offers software technical support and troubleshoots application program

problems. In addition, it develops documentation for all new and modified

software programs and conducts user training and develops user documentation

for application and system operating manuals [SFO03].

User Experience

It consists of a blend of tacit knowledge and historical project repositories

relevant to the current project. User experience considers wider relationship

between the product and user in order to investigate the individual’s personal

experience of using it. It encompasses all aspects of a product that users

experience directly and perceive, leam, and use including its form, behaviour

and content. Leamability, usefulness, and aesthetic appeal are key

factors in users’ experience [SFO03].

198

www.manaraa.com

User Conflict

User conflict is inevitable in a project environment as change seems to be

expected. When project team members interact during the course of completing

the tasks and responsibilities, there always exist a potential for conflict. In fact, it

is virtually impossible for people with diverse background skills and norms to

work together, make decisions, and try to meet project goals and objectives

without conflict. Over the years, three distinct views have evolved about conflict

in projects and organizations. Traditional view assumes that conflict is dreadful,

always has a negative impact, and leads to declines in performance as the level of

conflict increases. However, behavioural view also known as human relations

view advocates acceptance of conflict and rationalizes its existence. Lastly,

interactionist view assumes that conflict is necessary to increase performance.

Interactionist view encourages conflict based on the belief that a harmonious,

peaceful, tranquil, too-cooperative project organization is probable to become

static and unable to respond to change and innovation [SFO03].

Size

Size refers to an indication of the overall effort to be expended or the

number of people working on the project. Software projects have been divided

into large, medium, and small size. Major differences between project size

determined by the estimated total labour hours (the level of effort) required to

complete the project. Next, the use of cutting edge or existing technology and

type and extent of both user and system interface requirements. The project's

contribution to, and impact on, the activities carried out by the system users and

other departmental organizations [PM95].

Review

A review in software engineering domain constitutes formal and informal

reviews. The attributes of these two classes are controls, group dynamic, and

procedures. A review without any controls or defined procedures is informal. The

majority of the reviews discussed in software engineering standards and

guidelines are formal. To be formal, a review must be systematic. Formal review

199

www.manaraa.com

includes defined entry and exit criteria, a definite list of participant roles,

documented procedures for required output documents [PM95].

Personnel Change

Personnel referred to the people employed on a software system and

Personnel Change is the degree of dynamicity in involved system development

personnel. In other words, it is the transfer of responsibilities from owner person/

group to another person/ group responsible for completing the work [PM95],

7.3.1 Abstraction Method (AM)

Abstraction Method (AM) provides to software acquirers and users the

justifiable confidence that software will consistently exhibit security even when

the software comes under assail. AM enables formalization of security attributes

with respect to set of benefits associated to various perspectives and unvisualized

states associated with these benefits. Consequently, AM is a step towards

increasing recognition and applicability to the range of OBPs. The step wise

procedure is as follows:

Step I: Identification of benefits with various perspectives.

Firstly, benefits must be identified associated to various perspectives as

shown in Table 7.4.

Step II: Mapping the benefits concerning each unvisualized state.

Then, benefits are mapped to each unvisualized state such as

complexity, variability, ambiguity and uncertainty.

Step III: Finding security attributes to ensnare unvisualized states.

Various security attributes such as role definition, intricacy, technology

acquisition and resources etc. are identified to trap these unvisualized states.

Step IV: Allocation of security attributes to acquire secured environment.

Security attributes are allocated to remove the unvisualized states create

secured environment.

200

www.manaraa.com

Table 7.4: Perspective-Wise Benefits

Perspectives Benefits Associated

Generality
Engineering

Scalability
Supportability
Usability
Conceptual Integrity
Interoperability
Accessibility

Requirement
Engineering

Scalability
Supportability
Usability
Performance
Accessibility
Manageability

Reuse Engineering

Scalability
Usability
Conceptual Integrity
Interoperability
Performance
Maintainability
Recoverability
Manageability

Reliability
Engineering

Scalability
Usability
Conceptual Integrity
Performance
Testability

201

www.manaraa.com

7.3.2 Case Study

In this section, we have considered OBPs to analyze the execution of AM.

Our study concentrated on two aspects of security establishment; firstly impact of

unvisualized states incurred in OBPs due to aforesaid benefits and secondly,

impact of security attributes on these unvisualized states. In this section, we first

describe the research setup for our case study. OBPs are categorized on the basis

of various development perspectives. Category I consists of OBPs developed with

generality perspective whereas Category II possesses OBPs emphasized on

requirement engineering perspective. Category III contains OBPs build with

reusability perspective and Category IV includes OBPs having reliability

perspective. Table 7.5 covers 57 OBPs from four aforesaid categories for the

study of AM. Description of projects is illustrated in Appendix7.1.

It has been found during the rigorous study of various OBPs that the

functional characteristics of associated benefits affect the degree of dependency

on unvisualized state. We have studied the dependencies of each benefit on each

kind of unvisualized state in exhaustive manner as illustrated in Table 7.5. For

example, in first project PI developed with generality perspective, we have

identified various benefits such as conceptual integrity, accessibility,

interoperability, scalability, supportability and usability. And, all these benefits

lead to unvisualized states that affect project security. We have recognized

security attributes such as role definition, resources, expertise, user support and

review standards to ensnare unvisualized states and hence retain the security. On

the other hand, project P12 developed with requirement engineering perspective

includes benefits namely; conceptual integrity, manageability and scalability and

again all unvisualized states incurred. To overcome their effect and protect the

security we incorporate resources, user support, user conflicts, review standards

and personnel changes security attributes. Accordingly, we allocate different

security attributes to aid the project security and hence remove unvisualized states

caused by various benefits associated with aforesaid perspectives. Figure 7.1

shows the secured environment achieved accordingly.

202

www.manaraa.com

Ta
bl

e 7
.5

: C
at

eg
or

iz
at

io
n

of
 B

en
ef

its
 &

A
ss

oc
ia

te
d

U
nv

isu
al

iz
ed

 S
ta

te
s

(C
on

td
 ..

U
nv

is
ua

liz
ed

 S
ta

te
s | -

< - - - - - - - - - - - - - - - - - - -< - - - -

> -

U -

B
en

ef
its

1 B
ll 1 - - o - o - o - - - o - o - o - - - o - o - o -

1 BI
O

 1

o o

B9
 I

- - o - o - o - o - o - o - o - o - o - o - o -

a© - o - - o o - - o o - - o o - - - o - o o - -

i B7
 |

o o o o o o o o o - o - o - o - o - o - o - o -

B6 o o o o o o o o o o - o - - - - o o o o - - - -

1 B5
 | - o - - o o - - o o o o o o o o o o o o o o o o

B4 - o o o - - - - o o o o ~ - - - - o o o - - - -

1 B3
|

o o

1 B2
\

o o

\ B1
 | - o - - o o - - - o o o o o o o o o o o o o o o

Pr
oj

ec
t

a.

1 P2 ! P3
1

P4
 1

P6
1 P7 i 1

P8
 |

!
P9

1 1

O
ld

j

1
lid

| r pi2
i

1
P1

3
1

P1
4

[
P1

5 i
1

P1
6

!

r pi7
 i

1
P1

8
|

r pi9
i

P2
0

[
P2

1
1

|
P2

2
1

P2
3

P2
4

1
P2

5
|

C
at

eg
or

y

C
at

eg
or

y
I

C
at

eg
or

y
II

203

www.manaraa.com

U
nv

is
ua

liz
ed

 S
ta

te
s is -

< •— -

> -

u -

B
en

ef
its

r B
ii\ - o - o - o - o - o - o - o - o - o - o - o - o - o - o

BI
O

 |

o o o o o o o - - o - o - o - o - o - o - o - - - o - o

Os o

0© o - - o o - - o o - - o o - - o o - - o o - - - o - - o

B7
 1

- o - o - o - - - o - o - o - o - o - o - o - - - o - o

B6
 1

o o o - - - - o

B5
 |

o 1—1 - o o - e—i o

iW
J

o o

B3
 |

o - - o o - - - o *"■« - o o - - o o - - o o - - o o - - o

B2
 1

- - - - - - - o

B1
 I

o - - o o - - o

Pr
oj

ec
t

P2
7

P2
8 I

P2
9 J

P3
0 J

P3
1 I

P3
2 I

P3
3

P3
4

P3
5

1

P3
6

1

P3
7 oc

ft. P3
9

P4
0

1
P4

1
1

I P42 I P43 1
P4

5
I P46 P4

8
I P49 1

P5
0

P5
1

I P52 I P54 P5
5

1
P5

6
P5

7

C
at

eg
or

y

C
at

eg
or

y
II

I

C
at

eg
or

y
IV

204

www.manaraa.com

Figure 7.1: Secured Environment for Ontology Based Projects

0 o

205

www.manaraa.com

7.4 Results

With the help of case study, the performance of AM has been analyzed on

the basis of allocation of security attributes with the associated benefits. Some

observations are as follows:

• Complexity is incurred due to accomplishment of benefits such as

scalability, maintainability, testability and manageability and it may be

incised once intricacy, technology acquisition and resources

are well engrossed.

• Variability is attributable to the benefits such as suppoitability and

recoverability but user support, user conflicts and reviews may help to

ease variability.

• Interoperability, usability and accessibility benefits achievement lead to

ambiguity and inclusion of role definition, methodology and user

experience diminishes ambiguity.

• Uncertainty is owing to benefits such as conceptual integrity and

performance and it may be reduced if size, personnel changes and user

experience are reckoned.

206

www.manaraa.com

7.5 Summary

Software security is a demanding task in case of Ontology Based Projects

(OBPs) due to the side effects caused by inherent unvisualized states such as

complexity, variability, ambiguity and uncertainty. In this view, we have

discussed OBPs developed using various perspectives. These perspectives include

generality, requirement engineering, reusability and reliability. In next

Subsections, benefits associated with these perspectives and unvisualized states

incurred due to these benefits have been delineated. Next, we have proposed

secured software development environment for OBPs with various perspectives.

Consequently, we present Abstraction Method (AM) for developing the secured

environment and case study in subsequent Subsection. It has been noticed that the

influence of kinds of benefits associated with each perspective leads to different

unvisualized state. Thus, the security attributes corresponding to these

perspectives have been allocated to ensnare the kinds of unvisualized state

accordingly. Finally, AM provides analytical scheme to acquire secured

environment for different OBPs.

207

www.manaraa.com

Appendix 7.1 Description of Software Projects

Software Projects

1. Hospital Management System
Objective: To computerize the front office management of hospital.
Technology Used: VB 6.0, MS Access
Brief Description: It includes registration of patients, storing
their details into the system, and also computerized billing in the pharmacy, and
labs. It has the facility to give a unique id for every patient and stores the details
of every patient and the staff automatically. It includes a search facility to know
the current status of each room. User can search availability of a doctor and the
details of a patient using the id.

2. Railway Reservation System
Objective: To provide railway reservation, fare recordings, train and ticket
enquiry, and seat details management.
Technology Used: VB 6.0, MS Access
Brief Description: This project is designed to reduce the problem faced while
making railway reservations. It helps in the reservation of tickets as per one’s
choice, wish, simplicity and convenience. It also helps to enable private ticket
booking in a secured and authenticated manner. To book tickets through this
system, a customer first registers in system. Whenever a user logs-in it is checked
whether he is a registered customer in the customer database. A valid user then
gives the details of his travel. Our application then determines and displays to the
user the list of trains according to his demands from the train, stations and seat
databases. A user then books the tickets.

3. Library Management System
Objective: To support the general requirement of the library like acquisition,
cataloguing, circulation management.
Technology Used: Servlets, HTML, JavaScript, MS Access, Apache Tomcat
Server
Brief Description: This software application manages the student details,
employee details, books details. This system deals with the books issue, book
return operations, and fine calculations. This also takes care for security options.
This application enables you to enter details of new adding books in the institute
and also enables you to modify and delete records of books.

4. Bank Automation System
Objective: To manage the Automation of the banking system this will take care
of the Accounting information and Transactions.
Technology Used; Microsoft Visual Basic 6.0, Microsoft Access Database

208

www.manaraa.com

Brief Description: The system is developed for automatic interaction of all bank
departments, efficient data collection, processing and management, easy
integration into other bank systems / document management systems. It provides
global environment for all departments (legal, marketing, logistics, executive) and
extensive flexibility to support the localities and specifics of bank operations in
different countries.

5. Recycling Machine System
Objective: It controls a recycling machine for returnable bottles, cans and crates
Technology Used: VB. Net, SQL server
Brief Description: There exists different types and sizes of bottle and can, the
system has to check for each item that has been returned. The system operator
registers number of items returned by each customer and operator give receipt to
customer for value of retuned items.

6. Vending Machine System
Objective: To instruct the system to serve the beverage.
Technology Used: YHDL
Brief Description: The system is designed to activate the machine when the user
inserts a five rupee coin into coin slot. This coin will be detected by an IR sensor
and send a signal to the micro controller. The machine comprises of cylinder
controlled by micro controller. A fixed beverage is filled in the main container.
The beverage is poured in the glass through tap which opens and closes after fixed
time period and only activated when container is filled. Hence, the user gets the
beverage demanded by him by fully automated technique.

7. Telecom Management System
Objective: To manage automation of the management of Telecom services, this
involves customer applications, entries, and enquiries, queries and complaints.
Technology Used: Java (JDK), Servlets (JSDK), JSP, Tomcat Server, Oracle
Server, JDBC driver
Brief Description: It provides automation of the Telecom System and processes
all the activities through online. Here the main advantage of this system is to
access this database globally for users. The customers see their connection status
at any branch. Here dynamically generated the reports like previous details of the
customer. The main advantages of this system are to reduce the time and also
manpower

8. Web Alumni System
Objective: To make a connection between alumni.
Technology Used: JavaScript, PHP
Brief Description: This project is aimed at developing a repository for alumni of
the college. Anyone can access the search engine to know about any alumni of
that college but can’t be added. Alumni can only update the database when they
are in college.

209

www.manaraa.com

9. Airline Information System
Objective: To reserve seats for its customers, maintain information and also
update the database.
Technology Used: VB. MS Access
Brief Description: This project is based on the 2-tier architecture. The Project is
developed keeping in mind the security needs of today. The purpose of the Airline
Information System Project is to build an application program, which an airline
could use to manage the reservation of airline tickets. Passengers make flight
reservations through the ticketing staff of the airline, which can access a
centralized system to check on flight details. The system able to create flights,
delete flights and reserve seats for passengers according to their requested
Destination, day and time.

10. Online Shopping System
Objective: To manage purchasing and selling goods online.
Technology Used: HTML, JavaScript, SQL 7.0, JSP, JDK 1.2.2
Brief Description: The objective is to create a system which is used to purchase
and sell goods online i.e. through ‘internet’. The entire system is developed to
meet the requirements of the organization. The whole system is designed in such a
way that it contains the entire information required for purchasing and selling
goods online. It is developed with a valid login id and password. The entire
system is built taking care of user friendliness and security. The above system is
Flexible and Efficient and facilities all the users.

11. Online Examination System
Objective: To conduct an examination through internet.
Technology Used: ASP, MS Access
Brief Description: This Web Application provides facility to conduct online
examination worldwide. It saves time as it allows number of students to give the
exam at a time and displays the results as the test gets over, so no need to wait for
the result. It saves time as it allows number of students to give the exam at a time
and displays the results as the test gets over, so no need to wait for the result. It is
automatically generated by the server. Student can attend exam by entering login
id and password.

12. ATM System
Objective: To allow the user to create an account, deposit, withdraw, view his/her
account status.
Technology Used: Visual Basic 6.0, MS Access
Brief Description: The ATM is the project which is used to access their bank
accounts in order to make cash withdrawals, recharge their mobile phones and
booking their air tickets. Whenever the user need to make the cash withdraws,
they can enter their PIN number (Personal Identification Number) and it will
display the amount to be withdrawn. Once the withdrawal is successful, the
amount will be debited in their account.

210

www.manaraa.com

13. Hotel Automation System
Objective: To maiatain the details of customer booking information, trace the
details of customer also maintain the information about the hotel room
availability.
Technology Used: Microsoft Visual Studio 2005, C#.Net, Microsoft SQL Server
2005
Brief Description: The system provides all the details of availability of rooms
and dates for booking in advance. The Hotel Management System provides
features like Check In details of customer, customer booking details, Check Out
details, searching the details of customer.

14. Result Generation System
Objective: To maintain a database of results of students and produce them.
Technology Used: VB 6.0, MS Access
Brief Description: The system is designed such that it can save all the required
data of a student in a database and this database also contain the results of
individual students. This system can produce the information of student along
with its result.

15. Music School Automation System
Objective: To maintain records of the teachers, students and staff of Music
school.
Technology Used: Microsoft Visual Studio 2005, C#.Net, Microsoft SQL Server
2005
Brief Description: The proposed system will automate the current features with
an administration database and graphical user interfaces. It will be implemented to
cover the requirements of the Principal of the school like maintaining a database
for the staff, teachers and students. This product will be used in conjunction with
a web-browser.

16. Mass Transit System
Objective: The system manages all the transit mechanism digitally.
Technology Used: VB, MS-Access
Brief Description: It first classify the kinds of transit means such as airways,
railways or roadways. Then, it optimizes the routes according to customer’s need
that is time, route any type of transit means.

17. Power Utility System
Objective: It optimizes the power utility services.
Technology Used: VB, MS-Access
Brief Description: The system includes optimization of power sources such as
hydro-power, hydel power, and nuclear power. It manages the power generation,
power supply, power control and finally consumer billing.

18. Student Event System
Objective: To manage student events and athletics of a particular institution.

211

www.manaraa.com

Technology Used: HTML, JavaScript, SQL 7.0, JSP, JDK 1.2.2
Brief Description: The project includes a multi-faceted system for student event
ticket distribution. A process for students to login and reserve a ticket for any
sporting event, performance, or activity will be developed. This part of the project
will have several sections, a web application for the online reservation, a
standalone application for information desk and possible kiosk reservations, and
an on-site check-in and reservation retrieval system.

19. Personal Investment System
Objective: To help the user keep account of his/her money invested in
institutions such as Banks and Share Market.
Technology Used: VB 6.0, MS Access
Brief Description: The system is aimed towards a person who has considerable
number of investments in stock market and banks, and so needs software
assistance for book keeping and computations regarding the investments. Personal
Investment System is user-friendly, ‘quick to learn’ and reliable software for the
above purpose

20. Electronic Voting System
Objective: The purpose of this system is to implement the computerization of the
details, Polling results, current Polling and candidates.
Technology Used: PHP 5.0, My SQL 5.2
Brief Description: The system is supported through the college Student Records
System. This allows students to login and be authenticated as an entitled voter for
election purposes. The Electronic Voting System is recognized as secure and
accurate in its ability to authenticate students and to tabulate voting results.

21. Disease Analysis System
Objective: To develop a software for doctors and patients for immediate diagnose
disease.
Technology Used: Servlets (JSDK), JSP, Tomcat Server, Oracle 9i
Brief Description: The system is developed for doctors and patients for
immediate diagnose disease using tools which was usually done through manual
process. This system will be used to quickly find out the disease and generate
reports on about the patient status which will be useful for further understanding
to deal with the case.

22. Credit Ranking System
Objective: It rates the credibility of a customer.
Technology Used: VB .Net, SQL server
Brief Description: The system is works for ranking the customers credibility by
assessing his or her track records against the financial liabilities. It manages all
related operations that vary with type of customer such as service or
business class.

212

www.manaraa.com

23. Intelligent Air-traffic Control System
Objective: To immediate diagnose disease using tools which was usually done
through manual process.
Technology Used: VB 6.0, MS Access
Brief Description: The primary purpose of Air Traffic Control systems
worldwide is to separate aircraft to prevent collisions, to organize and expedite
the flow of traffic, and to provide information and other support for pilots when
able. Air Traffic Control System may also play a security or defense role and be
run entirely by the military.

24. Intelligent Home Control System
Objective: To control different types of home appliances by using a device.
Technology Used: Servlets (JSDK), JSP, Tomcat Server, Oracle Server
Brief Description: The system allow the users to access their home appliances by
using internet either through PC or mobile phones. In this system, users can use
Bluetooth transmitter through which they can build a communication between all
the devices at home and can access all the appliances at a time.

25. E-Recruitment System
Objective: To provide platform to job seekers to upload their resumes and apply
for jobs they wish to join.
Technology Used: Servlets (JSDK), JSP, Tomcat Server, Oracle Server
Brief Description: The system is designed as an online website wherein
jobseekers can register themselves at the site, apply for the job and attend exams.
This system can be implemented at a global level. The company can post their
staffing requirements and check the profiles of various candidates. These
recruitment methods are designed to get the best candidates for the job.

26. E-Medicine System
Objective: To manage purchasing and selling medicines online.
Technology Used: HTML, JavaScript, SQL 7.0, JSP, JDK 1.2.2
Brief Description: The objective is to create a system which is used to purchase
and sell medicines online. The entire system is developed to meet the
requirements of the organization. The whole system is designed in such a way that
it contains the entire information required for purchasing and selling medicines
online. Any individual can order any amount of medicines.

27. Inter ware House System
Objective: It manages the operations between the warehouses.
Technology Used: ASP .Net, Oracle 9i
Brief Description: The system is responsible for redistribution between different
warehouses. Various people are responsible for carrying out different processes
such as foreman is responsible for warehouse management. While, warehouse
worker works in a warehouse for loading and unloading. Subsequently, truck
driver is accountable for transportation and forklift operator drives a forklift in
one warehouse.

213

www.manaraa.com

28. Hydrology Plant Automation System
Objective: To manage data records of hydrologic plant.
Technology Used: VB 6.0, MS Access
Brief Description: The system is developed to automate the manual working
over the records of the hydrologic plant. It provides the data to be saved in a
particular database so that it can be used for further studies.

29. Online Student Feedback System
Objective: To maintain the quality of lectures by taking feedbacks of students.
Technology Used: HTML, JavaScript, SQL 7.0, JSP, JDK 1.2.2
Brief Description: The system is developed for the main evaluations done at any
institution by getting an anonymous student feedback at the end of the semester
and getting an overall summary of the students’ viewpoints regarding the
lecturer’s teaching.

30. Quiz System
Objective: The system is developed to evaluate student’s knowledge.
Technology Used: HTML, JavaScript, SQL 7.0, JSP, JDK 1.2.2
Brief Description: To randomize the selection of questions for each level based
on the difficulty category. The system shall be smart enough to determine the
difficulty of the question based on the user responses, meaning that higher wrong
answer percentage increase the question difficulty and hence the question is
selected in higher levels.

31. Rail route Optimization System
Objective: To show graphical representation of train route from starting point to
ending point.
Technology Used: VB 6.0, MS Access
Brief Description: The railway route optimization system is a product to serve
the end users or passengers to know the shortest distance in which they can reach
their destination in shortest period of time with minimum amount, if there is one
or more route to the station then the optimization system will show the graphical
representation of the route. From this end users can access from anywhere in the
world.

32. Student Evaluation System
Objective: To evaluate the overall performance of student.
Technology Used: VB 6.0, MS Access
Brief Description: The application deals with the student personal information,
college records, such as their subjects and their grades, summary reports for
enrollees, curricula, course and management of the said records. This application
is based on schools basic student information and record keeping and tracking.
The system being developed will aim to automate the whole system as it
progresses its development.

214

www.manaraa.com

33. Insurance Transaction Monitoring System
Objective; This SOA based application can be used by an insurance company to
maintain the insurance management, daily transactions, and policy registration.
Technology Used: JAVA, Oracle 9i
Brief Description: It keeps account of agents, policies, premiums. Also,
generates the monthly, quarterly, half Yearly and yearly premiums. In addition
monitors the Agents commission management and branch transaction details.

34. Health Care Service System
Objective: To provide medical services to the patients around, it can be used for
maintaining patient details and their test results
Technology Used; ASP. Net, MS Access
Brief Description: This SOA-based Software is for the automation of health care
management. Maintaining patient details, providing prescription, precautions and
diet advice, providing and maintaining all kinds of tests for patients, billing and
report generation.

35. HR Service Outsource System
Objective: Providing with skilled professionals who are focused specifically on
HR to help to reduce and manage operating costs and for improving employee
relations.
Technology Used: ASP. Net, MS Access
Brief Description: Overseeing organizational structure and staffing requirements
recruiting, training, and development Tracking department objectives, goals, and
strategies Employee and manager training Benefits administration Employee
orientation programs It keeps account of agents, policies, premiums. Also,
generates the monthly, quarterly, half Yearly and yearly premiums. In addition
monitors the Agents commission management and branch transaction details.

36. Real Estate Management System
Objective: To manage the residential and commercial real estate development
through the complete sales cycle starting from the development phase to the post
possession phase.
Technology Used: JAVA, Oracle 9i
Brief Description: The system functionalities start with pre sales management
then post sales management to customer Service. Pre sales management has four
phases for construction management, inventory management, broker management
and customer enquiry management. Post sales management concerned with
billing, collection, recovery and advertising. Consequently, customer service has
three sections such as customer complains management, customer portal and
marketing management.

37. Security Architecture Blueprint Service System
Objective: To carry out the intent of the enterprise risk management, security
policy and standards, and security architecture.
Technology Used: JAVA, SQL server

215

www.manaraa.com

Brief Description: The purpose of the security architecture blueprint is to bring
focus to the key areas of concern for the enterprise, highlighting decision criteria
and context for each domain. Identity management deals with the creation,
communication, recognition, and usage of identity in the enterprise. Identity
management includes provisioning services, directories, multi-factor
authentication, federation, and so on. All access control is predicated on identity,
a central concern to security architecture. Threat management deals with the
threats to systems such as virus, Trojans, worms, malicious hackers, force
majeure, and intentional and unintentional system misuse by insiders or outsiders.

38. DSpace
Objective: To provide digital library system that captures, stores, indexes,
preserves and redistributes the intellectual output of an organization's researchers
in digital formats.
Technology Used: Visual Basic, Oracle 9i
Brief Description: The system enables institutions to capture and describe
digital works using a custom workflow process such as distribute an institution's
digital works over the web, so users can search and retrieve items in the collection
and preserve digital works over the long term. DSpace system provides a way to
manage these research materials and publications in a professionally maintained
repository to give them greater visibility and accessibility over time.

39. Daily Sales Reporting Data ware housing System
Objective: analyze sales of major brands varying with different promotional
schemes.
Technology Used: Oracle 9i, J2SE
Brief Description: The system has been developed for a corporate food store
company, which is one of the organizations that sell various numbers of products
every day. This company has more branches in various locations, which maintains
database has lots of previous customer details, company personal information,
raw materials details, etc.

40. Internet Banking System
Objective: This Project investigates the entry threshold for providing a new
transaction service channel via the real options approach.
Technology Used: J2EE, SQL server
Brief Description: It Provides online banking for Balance Enquiry, Funds
Transfer to another account in the same bank, Request for cheque book/change of
address/stop payment of cheques and viewing monthly and annual statements. An
Internet banking system designed for the use of normal users (individuals),
industrialists and entrepreneurs.

41. Portfolio Management System
Objective: To keep the security, safety of Principal sum intact both in terms of
money as well as its purchasing power.
Technology used: J2EE, SQL server

216

www.manaraa.com

Brief Description: The major activities involved in portfolio management starts
with identification of assets or securities, allocation of investment and also
identifying the classes of assets for the purpose of investment. Then, it helps in
deciding the major weights, proportion of different assets in the portfolio by
taking in to consideration the related risk factors. Finally, selects the security
within the asset classes as identify.

42. e Tax portal
Objective: simplify and streamline all the corporate tax processes.
Technology used: JAVA, SQL server
Brief Description: A web-based solutions for document management and task
delegation to audit management and enhanced communication, eTaxPortal will
provide with valuable tax process automation. It ensures consistent business
processes and improves productivity with an organization and facilitates
collaboration and information sharing among various groups involved in tax
function.

43. Customer Invoicing System
Objective: To calculate all applicable charges and to generate all inclusive
invoices to the customers online.
Technology used: ASP net, Mysql
Brief Description: The purpose of this project is to automate the invoicing
process as much as possible, leading to a much quicker invoicing of the charges
and a more inclusive invoicing that relies on limited to no manual input.

44. Integrated Benefits Administration System
Objective: To process monthly retirement payments, benefit enrolments, new
retirements, refund requests, insurance premiums and retirement contributions.
Technology used: JAVA, SQL server
Brief Description: It is a web-enabled self-service functionality for providing
ease of use not only to its users, but also to members, retirees, beneficiaries, other
plan participants, 3rd party vendors, and employers. In addition, all functionality
will be available to each of the plans administered as appropriate for the plan
(e.g., handling of member and employer payments and receipts and refunds of
over payments, correspondence generations, imaging, maintenance of address
information, etc.).

45. Sales Force Management System
Objective: To help to automate sales and sales force management functions.
Technology used: ASP .net, Oracle 9i
Brief Description: It records all the stages in a sales process. It includes a contact
management system which tracks all contact that has been made with a given
customer, the purpose of the contact, and any follow up that might be required. It
also includes a sales lead tracking system, which lists potential customers through
paid phone lists, or customers of related products. Other elements of SFMS
include sales forecasting, order management and product knowledge.

217

www.manaraa.com

46. Online Personnel Rehabilitation system
Objective: To improve the quality of life of people with disability / marginalized
persons.
Technology used: J2EE, SQL server
Brief Description: It is an online portal for prevention of cause of disability,
provision of care facilities, creating a positive attitude towards people with
disabilities, provision of functional rehabilitation services, empowerment,
provision of education and training opportunities, creation of micro & macro
income -generation opportunities and management / monitoring and evaluation.

47. Student Admission System
Objective: To work for an institute conducting a professional course.
Technology Used: JAVA, SQL server
Brief Description: 1 supports the student admission and registration process,
maintenance of student personal, academic and fee related data. Database
maintained by this system usually contains the student’s personal, academic and
its fee related information. It focuses on storing and processing (insertion,
updation etc.) by using web pages. Generate Student’s Academic Detail Report,
Personal Detail Report. It stores Merit list provided by University.

48. Safety' Management System
Objective: To provide a complete solution for all areas of enterprise safety
management.
Technology Used: JAVA, SQL server
Brief Description; It record, track, report and respond to safety incidents while
proactively identifying potential safety hazards and risks. Also, it Conduct
accurate root-cause analysis to generate prevention strategies and implement
preventative and corrective actions. Streamline reporting processes, corporate
policies and workflow.

49. Attendance Management System
Objective: To assess the eligibility of a student on the basis of attendance.
Technology Used: VB .net, SQL server
Brief Description: System is developed for daily student attendance in schools,
colleges and institutes. If facilitates to access the attendance information of a
particular student in a particular class. The information is sorted by the operators,
which will be provided by the teacher for a particular class. This system will also
help in evaluating attendance eligibility criteria of a student.

50. Lab Management System
Objective: To develop effective software for maintaining the information relating
to the lab details.
Technology Used: Visual Basic and Ms-Access in Windows 98 operating system
Brief Description: This includes information about all lab items, doctors, patients
and purchase of this clinic. This system gives generalize, concise and accurate
information regarding billing, purchase details, stock etc. This system provides

218

www.manaraa.com

any type of enquiry such as patient details, stock, purchase details, purchase
return details, billing.

51. Online Auctioning Shop for a campus/organization
Objective: To create an Online Auctioning system which can be used to buy and
sell articles.
Technology Used: JAVA, mysql
Brief Description: The users of the system can create an item for sale providing
the item name, description, an image of the item, minimum bid prize etc. The
buyers can bid by providing a bid amount (which should be greater than the
previous bid). The system will have an administration module to administer the
categories of the shop as well as to block fraudulent users. The administrator will
set up the Categories of the items. A category is a logical subdivision of category
of similar products (e.g. Furniture, Electronic Accessories, and Books).
Administrator Create Categories, Merge Category etc. There will be a Search by
which users can search for items up for sale.

52. Profile verification System
Objective: To provide the employee information of all the registered companies
to the central server or the area of registration.
Technology Used; ASP .net, Oracle 9i
Brief Description: In the current proposed application each employee is
associated or assigned with an employee id that work within the company and the
global unique identity number by using which his identity can be traced in the
other companies by using the currently designed software. Each employee
information containing their employee id with company id, company name,
candidate name with initial salary and joining date, relieving and end salary
information has to be specified which can be verified by the other companies
while recruiting them as experienced candidates. A search engine is provided in
the login page help the candidates to search for the required company information
like the company profile containing their name, registered number, address, work
mode and their achievements.

53. Online Course Portal
Objective: To allow registered users of the system to join a course available in
the site and access the materials published for the course.
Technology Used: PHP, Oracle 9i
Brief Description: People can register themselves as students of a course or
Faculty for a course. When a person registers himself as a Faculty, an approval
mechanism should be triggered which sends an email to the Administrator for
approving the person as a Faculty. There will be an admin approval page where
admin can approve the faculty members for the course. The course home page
contains the title of the course and a brief description. The discussion board for
each course where students can interact, an announcement section, which contains
the latest announcements, and a course content section which gives the links for
the material available for the course has been provided. For faculty members an

219

www.manaraa.com

extra link for uploading the course content in a zip file format has been given. In
addition, mechanism for the faculty members to create a test for the course
specifying the test title and a set of multiple-choice questions and duration of time
of the test has been allotted.

54. Dealer Ship Management System
Objective: To trace the petrol bunks at dealers.
Technology Used: ASP.NET, Oracle 9i
Brief Description: It manages employee details, bank transaction, balance sheet,
monthly sales details, daily sales details, etc. This project makes the Dealer’s
work easier then manuals.

55. Cloud Operating System
Objective: To concentrate on virtualization of the applications, rather installing
into machine
Technology Used: Modified Linux platform
Brief Description: This enables the Operating System to load in no time and
connect to the internet instantly. This also provides to the basic Office
applications, Audio and video player, image viewer and file manager that
manages the files and provide file sharing facility on the cloud. The authentication
provides portability along with security, as all our data are stored onto the cloud
and can be accessed anywhere with the OS.

56. e-Post Office
Objective: To facilitate with all post office services online.
Technology Used: ASP.NET, MS Access
Brief Description: This is an online application meant to present an advanced
post office where the client can buy postcards, stamps, submit couriers/parcels
everything as like the normal post office do.

57. Mobile Billing System
Objective: To automate the mobile bill generation.
Technology Used; JAVA, SQL server
Brief Description: The system calculates the mobile bills automatically. It does
almost every work which is related to automatic mobile billing connection system
via- new connection , customer record modification, viewing customer records &
all works related to rate of bills, meter readings in addition to bill calculation and
bill generation.

220

www.manaraa.com

CHAPTER 8

Concluding Remarks

This thesis covered some research investigations towards Ontology Based

Software Engineering for improvement in various issues of usual software

engineering practices such as generality, requirement engineering, reusability,

reliability and security. We summarize the following important conclusions:

1. We have mapped phases of Object Oriented Software development Life

Cycle (OOSDLC) and Ontology Development life cycle (ODLC) to

develop Ontology Driven Information System (ODIS). We have

observed that, it enables the developer to reuse and share application

domain knowledge using a common vocabulary across heterogeneous

software applications. To establish this, we have developed generalized

Use Case Model and Object Model during Ontolysis phase, generalized

Design Model during Ontodesign and generalized Implementation

Model at Ontocontation phase of ODIS development. Our investigation

revealed that each phase of OOSDLC has very well derived from ODIS

Life Cycle while developing any information system such as

Transaction Processing System (TPS), Management Information

System (MIS), Office Automation System (OAS), Decision Support

System (DSS) or Expert System (ES). It is concluded that

ODIS facilitates the developer to concentrate on structure or

the domain and task.

2. Requirement Engineering (RE) is promising process and especially

draws on with the aim of amenable to analysis, communication, and

subsequent implementation. We have reviewed conventional REP

models and observed that each REP model have certain lacunas over

the former hence there exists no ideal REP model. Ontology Aided

221

www.manaraa.com

Requirement Engineering (OntoAidedRE) model has been introduced in

order to enable knowledge driven requirement engineering covering

requirement type, practices and suitability. Consequently, we have

compared conventional REP models with OntoAidedRE on the basis of

various project parameters such as Project type, Project size, Project

team, Project effort, Project quality, Project prioritized element and

Project key element. The study reveals that none of the conventional

REP models can accomplish each and every project parameter than

OntoAidedRE. It has been concluded that, it can be put into practice to

overcome the problems of conventional REP models and

consequently project parameters can be optimally contrived

by adapting OntoAidedRE.

3. Ontology based reuse is an emerging aspect and specially used for

resolving scalability and heterogeneity issues due to elicit practices. We

have attempted to present P4View approach to ensure the software

scalability and heterogeneity. Accordingly, Ontop4 View Reuse

framework has been developed based on ontology oriented systematic

P4View approach for reusing. We have found that, it fits in well to

make use of the content of ontologies to a maximal extent depending on

their particular domain, task and level of application formality. In

addition, to build a common conceptual base characterized by

knowledge, Ontology based Reuse Algorithm (OntoReuseAlgo) for

process planning has been recommended. We observed that, it supports

the application from three aspects such as System Element

Classification, Ontolayering Principle and Knowledge Reuse Scheme

for process planning. Lastly, Ontological Reuse (OnR) has been devised

from Object-Oriented Reuse (OORj. We have explored that OnR

achieves lucidness of unclear concepts related with software reuse.

Besides, the concepts have been linked rigorously. A significant aspect

of OnR suggests its independence from implementations or

222

www.manaraa.com

technological aspects and effectiveness of OnR has been suggested in

terms of software component, architecture, requirement, process,

technology and experience reuse subclasses.

4. Software reliability achievement is a challenging task due to its

dependency on users’ perspective. We have introduced ontological

approach for reliability achievement over object-oriented approach.

Then, a comparative analysis has been presented and scope of

Ontology Oriented Reliability (OnO-Reliability) has been outlined. In

addition, ontological specifications have been developed using

Onto Reliability protocol. We have presented some case studies to

understand the application of OntoReliahility protocol for software

specification development. Subsequently, the benefits have been

discussed. Lastly, we have attempted to quantify the reliability using

various project parameters. For the same reason, we have introduced

Ontological Reliability Quantification Method (ORQM). These project

parameters vary in their number and type as per the category of

project. Therefore, we have considered the project category as a

prerequisite for computing the reliability. We conducted a study of

different project case as per the category with varying number and

type of parameters and establish the fact that ORQM generates direct

empirical value for software reliability. Finally, we conclude that

ORQM is not a informal method but found to be a highly useful in

absence of reliability experts and historical failure data.

5. Software security is an important issue that needs to be resolved in case

of Ontology Based Projects (OBPs) due to the side effects caused by

inherent unvisualized states such as complexity, variability, ambiguity

and uncertainty. In this view, we have discussed OBPs developed using

various perspectives such as generality, requirement engineering,

reusability and reliability. We have attempted to develop a secured

223

www.manaraa.com

environment by presenting Abstraction Method (AM). Furthermore,

performance of AM has been examined on the basis of allocation of

security attributes with the associated benefits. It has been noticed that

the influence of kinds of benefits associated with each perspective leads

to different unvisualized state and AM provides analytical scheme to

acquire secured environment for different OBPs.

Thus, it involved development of Ontology Driven Information System

(ODIS) by mapping OOSDLC and ODLC. Subsequently, it entailed Ontology

Aided Requirement Engineering (OntoAidedRE) model for accomplishment of

generalized requirement specification set. Then, software reuse well engrossed by

building Ontop4 View Reuse framework based on ontology oriented P4View

approach for reusing and followed by Ontology Based Reuse Algorithm

(OntoReuseAlgo) to aid product redesign. Next, it leaded to software reliability

with Ontology-Oriented Reliability (OnO-Reliability) and Onto Reliability

Protocol. In addition, Ontological Reliability Quantification Method (ORQM)

quantified software reliability. Lastly, it included Abstraction Method {AM) for

developing secured environment for ontology Based Projects (OBPs).

224

www.manaraa.com

References

[ABH+99] Althoff K., Birk A., Hartkopf S. and Mulle W., “Managing
Software Engineering Experience for Comprehensive
Reuse”, Eleventh International Conference on Software
Engineering and Knowledge Engineering, Germany, 1999.

[ALB93] Alberts M., “An ontology for engineering design” Ph. D.
thesis. University of Twent., YMIR, 1993.

[APM+04] Ashri R., Payne T., Marvin D., Surridge M. and Taylor S.,
"Towards a Semantic Web Security Infrastructure" In
Semantic Web Services 2004 Spring Symposium Series.
Stanford University, Stanford California, 2004.

[AW06] Assmann U. and Wagner G., “Ontologies, Metamodels, and
Model-Driven Paradigm”, In Ontologies for Software
Engineering and Technology, Springer-Verlag Chapter 9,
2006.

[BAB+05] Biffl S., Aurum A., Boehm B., Erdogmus H. and
Griinbacher P. (eds.), “Value-Based Software Engineering”,
Springer Verlag, 2005.

[BAR06] Barrasa J., “Ontologies for Software Engineering and
Technology”, Springer-Verlag Chapter 11, 2006.

[BAT97] Borst W. N., Akkermans J. M. and J. L. Top, “Engineering
ontologies”, International Journal of Human-Computer
Studies, Special Issue on Using Explicit Ontologies in KBS
Development, 1997, Volume 46, pp 365-406.

[BBW96b] Borst, W. N., Benjamin J., Wielinga B. J. and J. M.
Akkermans, “An application of ontology construction”,
1996.

[BDP06] Broy M., DeiBenbock F. and Pizka M., “Demystifying
Maitainability”, Proceedings of the 4th Workshop on
Software Quality. ACM Press. Shanghai, China, 2006.

[BKK+02] Baclawski K., Koker M. K., Kogut P. A., Hart L., Smith J.,
Holmes W.S., Letkowski J., Arosen M. L. and Emery P.,
“Extending the Unified Modelling Language for Ontology

225

www.manaraa.com

Development”, International Journal of Software and
Systems Modelling, 2002, Volume 1, No. 2, pp 142-156.

[BL03]

[BMR94]

[BOE96]

[BOS95]

[CAC01]

[CG07]

[CHK+07]

[CJB98]

Breitman K. K., and Leite J. C. S. P., “Ontology as a
Requirement Engineering Product,” In Proceedings of the
11th IEEE International Requirements Engineering
Conference, Monterey Bay, California, USA, 2003, pp 309-
319.

Bateman, J., Magnini B. and Rinaldi F., “The generalized
upper model”. In N. J. I Mars (Ed.), Working Papers
European Conference on Artificial Intelligence ECAI'94
Workshop on Implemented Ontologies, Amsterdam,
ECCAI, 1994, pp 35-45.

Boehm B., “Identifying Quality Requirements Conflicts”,
IEEE Software, 1996.

Bose P., “Conceptual Design Model based Requirements
Analysis in Win -Win Framework for Concurrent
Requirement Engineering”, IEEE Workshop on Software
Specification and Design, 1995.

Castano S., Antonellies V. and Capoitani Vemercati S.,
“Global Viewing of Heterogeneous Data Sources”, IEEE
Transaction on Knowledge and Data engineering, 2001,
Volume 13, No. 2, pp 277-297.

Cortellessa V. and Grass! V., “A modelling approach to
analyze the impact of errorpropagation on reliability of
component-based systems”, In Heinz Schmidt, Ivica
Crnkovic, George Heineman, and Judith Stafford, editors.
Proceedings of the 10th International Symposium, CBSE
2007, Lecture Notes in Computer Science, Springer, 2007,
Volume 46, No. 8, pp 140-156.

Cuenca Grau B., Horrocks I., Kazakov Y. and Sattler U.,
“A Logical Framework for Modularity of Ontologies”, In:
Proceeding of the International Joint Conference on
Artificial Intelligence, IJCAI, 2007.

Chandrasekaran B., Josephson J. R. and Benjamins V.,
“Ontologies of Tasks and Methods”, In proceedings of
KAW’98, Canada, 1998.

226

www.manaraa.com

[CJB99] Chandrasekaran B., Josephson J. R. and Benjamins V.,
“What are Ontologies and Why do we need them?”, IEEE
Intelligent Systems, 1999, Volume 14, No. 1, pp 20-26.

[CLA81] Clarke B. L., “A calculus of individuals based on
'connection'”, NotreDame Journal of Formal Logic, 1981,
Volume 22, No. 3, pp 204-218.

[CLV+08] Carlos B., Lasheras J., Valencia-Garcia R., E. Femandez-
Medina, Toval A. and Piattini M., "A Systematic Review
and Comparison of Security Ontologies", In Proceedings of
Third International Conference on Availability, Reliability
and Security, IEEE Computer Society, 2008.

[CMI07] Cortellessa V., Di Marco A. and P. Inverardi, “Integrating
performance and reliability analysis in a non-functional
mda framework”, In Matthew B. Dwyer and Antonia Lopes,
editors, Proceedings of the 10th Fundamental Approaches
to Software Engineering, Lecture Notes in Computer
Science, Springer, 2007, Volume 44, No. 22, pp 57-71.

[CRC95] Cohn A. G., RandellD. A. and Z. Cui, “Taxonomies of
logically defined qualitative spatial relations”, International
Journal of Human-Computer Studies, 1995, Volume 43, pp
831-846.

[DAV90] Davis E. “Representations of Commonsense Knowledge”,
San Mateo, California: Morgan Kaufmann Publishers Inc.,
1990.

[DDM+98] Darimont, R., Delor E., Massonet P. and van Lamsweerde,
A., “GRAIL/KAOS: An Environment for Goal-Driven
Requirements Engineering”, Proc. ICSE’98 - 20th Inti.
Conf. on Software Engineering, Kyoto, 1998, Volume 2, pp
58-62.

[DER02] Deridder D., “A Concept Oriented Approach to Support
Software Maintenance and Reuse Activities”, 5th Joint
Conference on Knowledge-Based Software Engineering,
2002.

[DEV02] Devedzic V., “Understanding Ontological Engineering”,
Communications of ACM, 2002, Volume 45, No. 4, pp 136-
144.

227

www.manaraa.com

[DL07]

[DLV04]

[DR99]

[DV05]

[DV96]

[DVF93]

[DW99]

[EMB04]

[EW05]

[FCF93]

Darimont, R. and Lemoine, M. “Security Requirements for
Civil Aviation with UML and Goal Orientation”, Proc.
REFSQ’07 - Inti. Working Conference on Foundations for
Software Quality, Trondheim (Norway), LNCS 4542,
Springer-Verlag, 2007.

De Landtsheer R., Letier E. and van Lamsweerde A.,
“Deriving Tabular Event-Based Specifications from Goal-
Oriented Requirements Models”, Requirements
Engineering Journal, 2004, Volume 9, No. 2, pp 104-120.

Devedzic V. and Radovic D., “A framework for building
intelligent manufacturing systems”, IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 1999, Volume 29, No. 3, pp 422-439.

De Landtsheer R. and van Lamsweerde A., “Reasoning
About Confidentiality at Requirements Engineering Time”,
Proc. ESEC/FSE’05, Lisbon, Portugal, 2005.

Darimont R. and van Lamsweerde A., “Formal Refinement
Patterns for Goal-Driven Requirements Elaboration ”, Proc.
FSE’4 - Fourth ACM SIGSOFT Symp. on the Foundations
of Software Engineering, San Francisco, 1996, pp 179-190.

Dardenne A., van Lamsweerde A. and Fickas S., “Goal-
Directed Requirements Acquisition”, Science of Computer
Programming, 1993, Volume 20, pp 3-50.

Deridder D. and Wouters B., “The Use of Ontologies as a
Backbone of Software Engineering Tools”, Fourth
Australian Knowledge Acquisition Workshop, 1999.

Embley D., “Toward semantic understanding: An approach
based on information extraction ontologies”, In
Proceedings of the Fifteenth Conference on Australasian
Database Conference, Australian Computer Society, 2004.

Evermann J. and Wand Y., “Ontology based object oriented
domain modelling: fundamental concepts”, Requirements
Engineering, Springer-Verlag, London Ltd., 2005.

Fox M. S., Chionglo J. and Fadel F., “A common-
sensemodel of the enterprise”, In Proceedings of the
Industrial Engineering Research Conference, 1993.

228

www.manaraa.com

[FCM+03]

[FEA+02]

[FEN09]

[FEN 10]

[FEN 11]

[FF91]

[FFB+94]

[FFV+98]

[FGD92]

[FGJ97]

Falbo R. A., Cruz A. C, Mian P. G., Bertollo G. and
Borges F., “ODE: Ontology Based Software Development
Environment”, IX Argentine Congress on Computer
Science, 2003.

Fonseca F., Egenhofer M., Agouris P. and Camara C.,
Using Ontologies for Integrated Geographic Information

Systems”, Transactions in CIS, 2002.

Fenz S. and Ekelhart A., “Formalizing information security
knowledge,” Proceedings of the 4th international
Symposium on information, Computer, and
Communications Security, 2009, pp 183-194.

Fenz S., “Ontology-based generation of IT-security
metrics,” Proceedings of the 2010 ACM Symposium on
Applied Computing, 2010, pp 1833-1839.

Fenz S., Ekelhart A. and Neubauer T., “Information
Security Risk Management: In which security solutions is it
worth investing?”, Communications of the Association for
Information Systems, 2011, Volume 28, pp 329-356.

Falkenhainer B. and Forbus K. D. “Compositional
modelling: Finding the right model for the job”, Artificial
Intelligence, 1991, Volume 51, pp 95-143.

Falkenhainer B., Farquar A., Bobrow D., Fikes R. E.,
Forbus K. D., Gruber T. R., Iwasaki Y. and Kuipers B.,
“CML; A compositional modelling language. Technical
Report Technical report KSL-94-16”, Stanford Knowledge
Systems Laboratory, 1994.

Feather M., Fickas S., van Lamsweerde A. and Ponsard C.,
“Reconciling System Requirements and Runtime
Behaviour”, In Proc. IWSSD’98 - 9th Inti. Workshop on
Software Specification and Design, IEEE, 1998.

Falbo R. A., Guizzardi G. and Duarte K. C., “An
Ontological Approach to Domain Engineering”, In 14th
International conference on Software Engineering and
Knowledge Engineering, 1992, pp 351-358.

Fernandez-Lopez M., Gomez-Perez A. and Juristo N.,
“METHONTOLOGY: From Ontological Art Towards
Ontological Engineering”, Spring Symposium on
Ontological Engineering of AAAI, 1997, pp 33-40.

229

www.manaraa.com

[FH97]

[FK05]

[FMR98]

[FOR84]

[FS94]

[FS97]

[GF95]

[GFC03]

[GFC04]

[GFV96]

[GH03]

Fridman-Noy N. and Hafner C. D., “The state of the art in
ontology design: a survey and comparative review”, AI
Magazine, 1997, pp 53-74.

Frakes W. B. and Kang K., “Software Reuse Research:
Status and Future”, IEEE Transactions on Software
Engineering, 2005, Volume 31, No. 7.

Falbo R., Menezes C. and Rocha A., “Using Ontologies to
Improve Knowledge Integration in Software Engineering
environment”, 4th International Conference on Information
System Analysis and Synthesis, 1998.

Forbus K. D. “Qualitative process theory”, Artificial
Intelligence 1984, Volume 24, pp 85-168.

Falasconi S. and Stefanelli M., “A library of medical
ontologies”, In N. J I Mars (Ed.), Working Papers
European Conference on Artificial Intelligence ECAT94
Workshop on Implemented Ontologies, ECCAI,
Amsterdam, 1994, pp 81 -91.

Fowler M. and Scott K. “UML Distilled: Applying the
Standard Object Modelling Language”, Addison-Wesley,
Reading, MA, 1997.

Gruninger M. and Fox M. S., “Methodology for Design and
Evaluation of ontologies”. In Skuce D (ed) IJCAE95
Wokshop on Basic Ontlogical Issues in Knowledge Sharing,
1995, pp 6.1-6.10.

Gomez-Perez A., Femandez-Lopez M. and Corcho O.,
“Ontological Engineering”, Springer-Verlag, London, UK,
2003.

Gomez Perez A., Fernandez Lopez M. and Corcho O.,
“Ontological Engineering”, Springer-Verlag, 2004.

Gomez-Perez A., Femandez-Lopez M. and de Vicente A.,
“Towards a Method to Conceptualize Domain Ontologies”,
In ven der Vet P(ed) ECAI’96 Workshop on ontological
engineering, 1996, pp 41-52.

Gonzales Perez C. and Henderson-Sellers B., “An Ontology
for Software Development Methodologies and Endeavors”,
In Ontologies for Software engineering and Technologies
Springer-Verlag, 2003.

230

www.manaraa.com

[GH95] Gamma E., Helm R., Johnson R. and Vlissides J., “Design
Patterns: Elements of Reusable Object- Oriented Software”,
Addison-Wesley, 1995.

[GHJ+95] Gamma E., Helm R., Johnson R. and Vlissides, J., “Design
Patterns: Elements of Reusable Object-Oriented Software”
Addison-Wesley, Reading, MA, 1995.

[GHW02] Guizzardi G., Herre H. and Wagner G., “On the General
Ontological Foundation of Conceptual Modelling”, 2ls>
International Conference on Concetual Modelling, 2002.

[GL02] Guminger M. and Lee J., “Ontology Applications and
Design”, Communications of ACM, 2002, Volume 45, No.
2, pp 39-41.

[GLT98] Gokhale S., Lyu M. and Trivedi K., “Reliability Simulation
of Component BasedSoftware Systems”, In Reliability
Simulation of Component Based Sofware Systems, Proc. of
the 9th ISSRE, 1998, pp 192-201.

[GOMOl] Gomez-Perez A.,” Evaluation of Ontologies”, International
Journal of Intelligent Systems, 2001, Volume 16, No. 3, pp
391-409.

[GOM98] Gomez-Perez A., “Knowledge Sharing and Reuse”, In hand
Book of Applied Expert Systems, 1998.

[GPH+05] Govseva-Popstojanova K., Hamill M. and Perugupalli R.,
“Large empirical case study of architecture-based software
reliability”, In ISSRE ’05: Proceedings of the 16th IEEE
International Symposium on Software Reliability
Engineering, Washington, DC, USA, 2005, pp 43-52.

[GPM+01] Govseva-Popstojanova K., Mathur A. P. and Trivedi K. S.,
“Comparison of Architecture-Based Software Reliability
Models”, In Proc. of the 12th ISSRE, Elsevier Science, 2001.

[GPT01] Go'seva-Popstojanova K. and Trivedi K. S., “Architecture-
Based Approach to Reliability Assessment of Software
Systems”, In Proc. of the 12th ISSRE, IEEE Computer
Society, 2001, pp 22-31.

[GRU92] Gruber T. R., “A translation approach to portable ontology
specifications, Knowledge Acquisition”, 1992, Volume 5,
No. 2, pp 199-220.

231

www.manaraa.com

[GS02]

[GSC+07]

[GUA04]

[GUA98]

[HAM04]

[HAY85]

[HKW+04]

[HL01]

[HMOl]

[HOB95]

[H0098]

Guarino N. and Schneider L., “Ontology Driven Conceptual
Modelling”, ER, Preconference Tutorials, 2002.

Gauch S., Speretta M., Chandramouli A. and Micarelli A.,
“User Profiles for Personalized Information Access”, in
“The Adaptative Web", 2007, Volume 2, pp 54-89.

Guarino N., “Towards Formal Evaluation of Ontology
Quality”, IEEE Intelligence Systems, 2004, Volume 19, No.
4, pp 78-79.

Guarino N., “Formal Ontology in information systems”, In
Guarino N(ed) International conference on Formal
Ontology in information systems, 1998, pp 3-15.

Hamza H. S., “Improving Analysis Patterns Reuse: An
Ontological Approach”, In Workshop on Ontologies for
Software Engineering Artifacts, 2004.

Hayes P. J., “Naive physics i: Ontology for liquids”, In J R.
Hobbs and R. C. Moore (Eds.), Formal Theories of the
Commonsense World, Norwood, New Jersey: Ablex
Publishing Corporation, 1985.

Hoffmann M., Kuhn N., Weber M. and Bittner M.,
“Requirements for requirements management tools,
Requirements Engineering”, Proc. 12th IEEE International
Conference, 2004, pp 301-308.

Hemer D. and Lindsay P., “Specification-based Retrieval
Strategies for Module Reuse”, Proceedings Australian
Software Engineering Conference, 27-28 , Canberra,
Australia, IEEE Computer Society, 2001, pp 235-243

Huszerl G. and Majzik I., “Modelling and analysis of
redundancy management in distributed object-oriented
systems by using UML statecharts”, In Proc. of the 27th
EuroMicro Conference, Workshop on Software Process and
Product Improvement, Poland, 2001, pp 200-207.

Hobbs J. R., “Sketch of an ontology underlying the waywe
talk about the world”, International Journal of Human-
Computer Studies, 1995, Volume 43, pp 819-830.

Hoog R, “Methodologies for Building Knowledge Based
Systems: Achievements and Prospects”, Handbook of
Expert Systems, CRC press, 1998.

232

www.manaraa.com

[HSW97]

[JAC92]

[JCJ+07]

[JINGO]

[JMF08]

[JMY99]

[JUROl]

[KBG+06]

[KG02]

[KL02]

[KM97]

Heijst Van G., Schereiber A. T. and Wielinga B. J., “Using
Explicit Ontology in KBS Development”, International
Journal of Human and Computer Studies, 1997, Volume
46, No. 2, pp 293-310.

Jacobson I., “Object Oriented Software Engineering- A Use
case driven approach”, Pearson Education, 1992.

Jacobson I., Christerson M., Jonsson P. and Overgaard G.,
“Object Oriented Software Engineering - A Usecase driven
Approach”, 2007.

Jin Z., "Ontology-Based Requirements Elicitation," Journal
of Computers, 2000, Volume 23, No. 5, pp 486-492.

Jureta I. J., Mylopoulos J. and Faulkner S., “Revisiting the
Core Ontology and Problem in Requirements Engineering”,
16th IEEE International Requirements Engineering
Conference, 2008.

Jurisica I., Mylopoulos J. and Yu E., “Using Ontologies for
Knowledge Management: An Information System
Perspective”, In proceedings of ASIS’99, 1999, pp 482-496.

Jurjens J., “Towards development of secure systems using
UMLsec”, Lecture Notes in Computer Science, 2001.

Karyda M., Balopoulos L., Gymnopoulos S., Kokolakis C.,
Lambrinoudakis S., Gritzalis, and Dritsas S., "An Ontology
for Secure E-Govemment Applications." In Proceedings of
the First International Conference on Availability,
Reliability and Security, IEEE Computer Society, 2006.

Khayati O. and Giraudin J. P., “Components retrieval
systems: Reuse in Object-Oriented Information Systems
Design,” OOIS workshop Montpellier, France, 2002.

Khan L. and Luo F., “Ontology construction for
Information Selection”, 14th IEEE Conference on Tools
with Artificial Intelligence, 2002, pp 122-127.

Krishnamurthy S. and Mathur A. P., “On the estimation of
reliability of a software system using reliabilities of its
components”, In Proceedings of the 8th International
Symposium on Software Reliability Engineering (ISSUE
’97), Washington, DC, USA,IEEE Computer Society, 1997.

233

www.manaraa.com

[KMY91] Kelly J. P. J., McVittie T. I. and W. I. Yamamoto,
“Implementing design diversity to achieve fault tolerance”,
IEEE Software, 1991, Volume 8, No. 4, pp 61-71.

[KOG+08] Kossmann M., Odeh M, Gillies A. and Wong R., “From
Process-Driven to Knowledge Driven Requirements
Engineering Using Domain Ontology”, INCOSE, 2008.

[KS06] Kaiya H. And Saeki M., "Using Domain Ontology as
Domain Knowledge for Requirements Elicitation," in
Proceedings of 14th IEEE International Requirements
Engineering Conference, 2006, pp 186-195.

[LAB+96] Laresgoiti I., Anjewierden A., Bemaras A., Corera J.,
Schreiber A. T. and Wielinga B. J., “Ontologies as vehicles
for reuse: A mini-experiment”, In B. R. Gaines and M. A.
Musen (Eds.)”, Proceedings of the 10th Banff
KnowledgeAcquisition for Knowledge-Based
Systems Workshop KAW'96, Banff, Alberta, Canada, 1996.

[LEN95] Lenat D. B., “CYC: A large-scale investment in knowledge
infrastructure”, ACM38, 1995, Volume 11, pp 33-38.

[LG90] Lenat D. B. and Guha R. V., “Building large knowledge-
based systems. Representation and inference in the Cyc
project”, Reading, Massachusetts: Addison-Wesley, 1990.

[LGS+99] Lopez M. F., Gomez-Perez A., Sierra J. P. and Sierra A. P.,
“Building a chemical ontology using methontology and the
ontology design environment”, IEEE Intelligent Systems,
1999, Volume 14, pp 37-46.

[LHC+05] Lo J. H., Huang C.Y., Chen I. Y., Kuo S. Y. and Lyu M. R.,
“Reliability assessment and sensitivity analysis of software
reliability growth modelling based on software module
structure”, Journal of Systems Software, 2005, Volume 76,
No. l,pp 3-13.

[LINK1] www.bettscomDuters.com/fivetvDesofinformationsvstems.
html?

[LINO] www.idi.ntnu .no/grupper/su/ courses/difB901 /presentations

[LINKS] httD://www.cbiectiver.com.

234

www.manaraa.com

[LINK4] http://www.kinetium.com/maD/demo/demo index.html.

[LINKS] www.lifecvclestep.com/open/406.0HomeProiSize.html

[LINK6] OMG, “Reusable Asset Specification”, OMG Available
Specification Version 2.2, formal 05-11- 02, www.oms.ore.

[LINK7] http://msdn.microsoft.com/en-us/librarv/ee658094.asDx

[LINKS] http://www.microsoft.com/mscorp/execmail/2005/02-
03interoperabilitv.mspx

[LINO] Cyc: OpenCYc.org “Formalized Common Knowledge” in
http://www.opencvc.ors68

[LIU92] Liu Z. Y., “Integrating two ontologies for electronics. In B.
Fairings and P. Struss (Eds.)”, Recent Advances in
Qualitative Physics, Cambridge, Massachusetts: The MIT
Press, 1992, pp 153-168.

[LKM+08] Letier E., Kramer J., Magee J. and Uchitel S., “Deriving
Event-based Transition Systems from Goal-oriented
Requirements Models”, Automated Software Engineering,
2008, Volume 15, No. 2, pp 175-206.

[LPR93] Lubars M., Potts C. and Richter C, “A Review of the State
of the Practice in Requirements Modelling”, Proceedings of
the IEEE International Symposium on Requirements
Engineering, San Diego, USA IEEE Computer Society,
1993, pp 2-14.

[LV02] Letier, E. and van Lamsweerde A., “Deriving Operational
Software Specifications from System Goals”, Proc.
FSE’10: 10th ACM Symp. Foundations of Software
Engineering, Charleston, 2002.

[LV04] Letier, E. and van Lamsweerde A., “Reasoning about
Partial Goal Satisfaction for Requirements and Design
Engineering”, Proc. ACMFSE’04, 2004, pp 53-62.

[LYU07] Lyu M. R., “Software reliability engineering: A roadmap”,
In FOSE ’07: 2007 Future of Software Engineering,
Washington, DC, USA, IEEE Computer Society, USA,
2007, pp 153-170.

235

www.manaraa.com

[LYU96] Lyu M. R., “Handbook of Software Reliability
Engineering”, IEEE Computer Society Press and McGraw-
Hill, 1996.

[MAOS] Mendes 0. and Abran A., “Issues in the Development of an
Ontology for an emerging Engineering Discipline”, 1st
workshop on Ontology, Conceptualization and
Epistemology for Software and System engineering, Spain,
2005.

[MAR03] Marc D., "Towards Security Ontology." IEEE Security and
Privacy 1, 2003, Volume 3, pp 6-7.

[MC06] McDowell L. and Cafarella M., “Ontology-driven
information extraction with OntoSyphon”, In International
Semantic Web Conference, 2006.

[MER+03] Mili H., Ah-Ki E., Godin R. and Mcheick H., “An
experiment in software component retrieval”, Journal of
Information and Software Technology, 2003, Volume 45,
pp 633-649.

[MF03] Milan P. G. and Falbo R. A., “Building Ontologies in a
domain Oriented Software Engineering Environment”, IX
Argentine Congress on Computer Science, La Plata,
Argentina, 2003.

[MF11] Montesino R. and Fenz S., “Information security
automation: how far can we go?”, Sixth International
Conference on Availability, Reliability and Security
(ARES), Vienna, Austria, 2011.

[MGM03] Mouratidis H., Giorgini P., and Manson G., “An Ontology
for Modelling Security: The Tropos Project”, in
Proceedings of the KES 2003 Invited Session Ontology and
Multi-Agent Systems Design (OMASD'03),University of
Oxford, United Kingdom, 2003.

[MHG+05] Mouratidis, Haralambos, Giorgini P. and Gordon Manson
J., "When Security Meets Software Engineering: A Case of
Modelling Secure Information Systems." Information
Systems 30, 2005, Volume 8, pp 609-629.

[MIZ98] Mizoguchi R., “A step towards ontological engineering”,
Proceedings of 12th National Conference on AI of JSAI,
1998, pp 24-31.

236

www.manaraa.com

[MJJ06]

[MJJ06]

[MMJ+04]

[MSOO]

[MVI95]

[NFF+91]

[NHMOO]

[NMOO]

[NM04]

[OVR+06]

[PM95]

Svahnberg M., van Gurp J. and Bosch J. “A taxonomy of
variability realization”, 2006.

Svahnberg M., van Gurp J. and Bosch J., “A taxonomy of
variability realization techniques”, Software - Practice and
Experience, 2006, Volume 35, No. 8, pp 705-754.

Maijo K., Matti V., Jyrki K., Sari K. and Reijo S.,
“Implementing requirements engineering processes
throughout organizations: success factors and challenges”,
2004.

Maedche A. and Stab S., “Semi-automatic Engineering of
Ontologies from Text”, 12th international Conference on
Software Engineering and Knowledge Engineering, 2000.

Mizoguchi R., Vanwelkenhuysen J. and Ikeda M, “Task
ontology for reuse of problem solving knowledge”, In
Building and Knowledge Sharing, 2nd International
Conference on Very Large-Scale Knowledge Bases,
Enschede, The Netherlands, 1995, pp 46-59.

Neches R., Fikes R. E., Finin T., Gruber T.R., Senator T.
and Swartout W. R., “Enabling Ontologies for knowledge
Sharing”, AI magazine 1991, Volume 12, No. 3, pp 36-56.

Nour P., Houz H. and Maurer F., “Ontology Based
Retrieval of Software Process Experiences”, ICSE
workshop on Software Engineering, 2000.

Noy N. F. and McGuinness D. L., “Ontology Development
101: A Guide to Creating Your First Ontology”, Stanford
University, 2000.

Noy N. F. and Musen M. A., “Ontology versioning in
Ontology management Framework”, IEEE Intelligent
Systems, 2004, Volume 19, No. 4, pp 6-13.

Oliveira K. M., Villela K., Rocha A. R. and Horta G., “Use
of Ontologies in Software Development Environments”, In
Ontologies for Software Engineering and Technology,
Springer-Verlag Volume 10, 2006.

Pamas D. L. and Madey, J., “Functional Documents for
Computer Systems”, Science of Computer Programming,
1995, Volume 25, pp 41-61.

237

www.manaraa.com

[PMM+07]

[PRE05]

[RAMOS]

[REI97]

[RHT+Ol]

[RK11]

[RL02]

[SAB93]

[SBF98]

[SFO03]

[SG05]

Ponsard C., Massonet P. Molderez J. F., Rifaut A. and van
Lamsweerde A. “Early Verification and Validation of
Mission-Critical Systems”, Formal Methods in System
Design Springer, June 2007, Volume 30, No. 3, pp 233-247.

Pressman R. S., “Software Engineering: a practitioner’s
approach”. Me Grow Hill, New York, 2005.

Ramachandran, “Software Reuse Guidelines”, ACM
SIGSOFT Software Engineering Notes, 2005, Volume 30,
No. 3, pp 1-8.

Reifer D. J., “Practical Software Reuse, Strategies for
introducing reuse concepts in your organization”, John
Wiley & Sons Inc, 1997.

Raskin V., Hempelmann C., Triezenberg K. and Nirenburg
S., “Ontology in Information Security: A Useful Theoretical
Foundation and Methodological Tool”, In Proceedings of
the New Security Paradigms Workshop, New York, USA,
ACM, 2001.

Radack S. and Kuhn R., “Managing Security: The Security
Content Automation Protocol,” IT Professional, 2011.

Rus I. and Lindvall M., “Knowledge Management in
Software Engineering”, IEEE Software, 2002, Volume 19,
No. 3, pp 26-38.

Sablayrolles P., “A two-level semantics for french
expression of motion”, DFK1 research report,- 1993.

Studer R., Benjamins V. R. and Fensel D., “Knowledge
Engineering: Principles and Methods”, IEEE Transaction
on Knowledge and Data engineering, 1998, Volume 25,
No. 12, pp 161-197.

Sindre G., Firesmith D. G. and Opdahl A. L., “A Reuse-
Based Approach to Determining Security Requirements”, In
Proceedings of the 9th International Workshop on
Requirements Engineering: Foundation for Software
Quality (REFSQ'03), Klagenfurt/Velden, Austria, 2003.

Seok Won Lee and Gandhi R.A., “Ontology-based Active
Requirements Engineering Framework”, In the Proceedings
of the 12th Asia-Pacific Software Engineering Conference
(APSEC’05), 2005.

238

www.manaraa.com

[SHA95]

[SI 10a]

[SIlOb]

[SI 11a]

[Slllb]

[SIllc]

[Sllld]

[Sllle]

[SI12a]

Shaw M., “Patterns for software architectures”, In:
J.Coplien, D. Schmidt (eds). Pattern Languages of Program
Design. Addison-Wesley, Reading, MA, 1995, pp 453-462.

Sharma S. and Ingle M., “Developing Ontology for
Information Systems Using Object Oriented Engineering
Concepts”, National Conference on ICT: Theory,
applications and practices. Sir Padampat Singhania
University, Udaipur, 2010.

Sharma S. and Ingle M., “Study of Object Oriented
Software Engineering versus Ontology Engineering”,
National Conference on Emerging Technologies in
Electronics, Mechanical and Computer Engineering, IIST,
Indore, 2010.

Sharma S. and Ingle M., “An Ontology Driven Information
System”, International Journal of Computer Technology
and Applications, 2011, Volume 2, No. 1, pp 147-154.

Sharma S. and Ingle M, “An Ontology Aided Requirement
Engineering Framework”, International Journal of
Advanced Research in Computer Science,20 \ 1, Volume 2,
No. l,pp 279-283.

Sharma S. and Ingle M., “REP Models versus
OntoAidedRE - A Parameters Based Study”, International
Journal of Latest Trends in Computing, 2011, Volume 2,
No. l,pp 172-177.

Sharma S. and Ingle M., “Developing a Reusable
Framework using an Ingenious Approach”, International
Journal of Research and Reviews in Computer Science
(IJRRCS) 2011, Volume 2, No. 4, pp 1082-1087.

Sharma S. and Ingle M., “An Ontology Based Reuse
Algorithm towards Process Planning in Software
Development”, International Journal of Advanced
Computer Science and Applications, 2011, Volume 2, No.
9, pp 133-137.

Sharma S. and Ingle M., “Assessment of Ontological Reuse
versus Object Oriented Reuse Anchored in Various Reuse
Subclasses”, International Journal of Engineering and
Technology (IJET), 2012, Volume 2 No. 3, pp 469-474.

239

www.manaraa.com

[SI12b]

[SI12c]

[SK03]

[SK04]

[SMA05]

[SM98]

[SMB07]

[SMJ02]

[SOMOl]

[SPL06]

[SRK+97]

Sharma S. and Ingle M., “Ontology Based Specifications
for Software Reliability Advancement”, International
Journal of Computer Applications, 2012, Volume 43,
No. 13, pp 18-26.

Sharma S. and Ingle M., “Object Oriented versus Ontology
oriented Software Reliability Development”, International
Conference on Software Engineering CONSEG ’12, DAVY,
Indore, 2012.

Stuckenschmidt H. and Klein M., “Integrity and change in
modular ontologies”, In Proceedings of the International
Joint Conference on Artificial Intelligence - IJCAI'03,
Acapulco, Mexico, 2003.

Stuckenschmidt H. and Klein M., “Structure-based
partitioning of large concept hierarchies ”, In Proceedings
of the 3rd International Semantic Web Conference,
Hiroshima, Japan, 2004.

Kaiya H. and Saeki M., "Ontology Based Requirements
Analysis; Lightweight Semantic Processing Approach," in
Fifth International Conference on Quality Software, 2005
pp 19-20.

Sutcliffe A. and Maiden N., "The domain theory for
requirements engineering," IEEE Transactions on Software
Engineering, 1998, Volume 24, No. 3, pp 174-196.

Shoval P., Maidel V. and Bracha S., “An ontology content-
based filtering method”, I.Tech-07- Information Research
and Applications, 2007.

Spyns P., MeersMan R. and Jarrar M., “Data Modelling
Versus Ontology Engineering”, SIGMOD 2002, Volume
31, No. 4, pp 12-17.

Sommerville I., “Software Engineering”, Addison-Wesley,
sixth edition, 2001.

Shenhar A., Poli M. and Lechler T., “A New Framework
for Strategic Project Management”, 2006.

Swartout B., Ramesh P., Knight K. and Russ T., “Towards
Distributed Use of Large-Scale Ontologies,” Spring
Symposium on Ontological Engineering of AAAI, 1997, pp
138-148.

240

www.manaraa.com

[SS03]

[SS06]

[SS99]

[SSS+01]

[ST99]

[STA08]

[SZY98]

[TAOO]

[TG06]

[TRA95]

[TVM+04]

Sugumaran V. and Storey V., “A semantic-Based Approach
to Component Retrieval”, The Data Base for advances in
Information Systems, 2003, Volume 34, No. 3.

Schlicht A., Stuckenschmidt H., “Towards Structural
Criteria for Ontology Modularization”, In Proceeding of the
ISWC 2006 Workshop on Modular Ontologies, 2006.

Sodhi J. and Sodhi P., '‘‘'Software Reuse, Domain Analysis
and Design Process ”, Computing McGraw Hill, 1999.

Staab S., Schnurr H. P., Studer R., Sure Y., "Knowledge
Processes and Ontologies", IEEE Intelligent Systemds,
2001, Volume 16, No. 1, pp 26-34.

Swartout W. and Tate A., “Ontologies, Guest Editors”
Introduction”, IEEE Intelligent Systems, Special Issue on
Ontologies, 1999, Volume 14, No. 1, pp 18-19.

Stacy Goff, “Measuring and Managing Project Quality”
2008.

Szyperski C., “Component Software: Beyond Object-
Oriented Programming”, ACMPress/Addison-Wesley, New
York, NY/Reading, MA, 1998.

Tautz C. and Althoff H., “A Case Study on Engineering
Ontologies and Related processes for Sharing Software
Engineering process”, In proceeding of 12th International
conference on Software Engineering and Knowledge
engineering, 2000, pp 318-327.

Tsoumas B. and Gritzalis D., "Towards an Ontology-Based
Security Management", In Proceedings of, 20th
International Conference on Advanced Information
Networking and Applications, 2006.

Trammell C., “Quantifying the reliability of software:
statistical testing based on a usage model”, In ISESS ’95:
Proceedings of the 2nd IEEE Software Engineering
Standards Symposium, Washington, DC, USA, 1995.

Tran Van H., van Lamsweerde A., Massonet P. and Ponsard
Ch., “Goal-Oriented Requirements Animation”, Proc.
RE’04, 12th IEEE Joint International Requirements
Engineering Conference, Kyoto, 2004, pp 218-222.

241

www.manaraa.com

[UG96] Uschold M. and Guminger M, “Ontologies: Principles,
Methods and Applications”, Knowledge Engineering
Review, 1996, Volume 11, No. 2, pp 93-155.

[UJ99] Uschold M. and Jasper R., “A Framework for
Understanding and Classifying Ontology Applications”, In
Proceedings of IJCAI workshop on Ontologies and Problem
Solving Methods, 1999.

[VAN01] Van Lamsweerde A., “Goal-Oriented Requirements
Engineering: A Guided Tour”, Invited Minitutorial.
Proc.RE’Ol - 5th Inti. Symp. Requirements Engineering,
Toronto, 2001, pp 249-263.

[VAN03] Van Lamsweerde A., “From System Goals to Software
Architecture”, In Formal Methods for Software
Architecture, LNCS 2804, Springer-Verlag, 2003.

[VAN04a] Van Lamsweerde A.,“Elaborating Security Requirements
by Construction of Intentional Anti-Models”, Proc.
ICSE’04, 26th International Conference on Software
Engineering, Edinburgh, ACM-IEEE, 2004, pp 148-157.

[VAN04b] Van Lamsweerde A., “Goal-Oriented Requirements
Engineering; A Roundtrip from Research to Practice”,
Keynote paper, Proc. RE’04, 12th IEEE Joint Inti.
Requirements Engineering Conf, Kyoto, 2004, pp 4-8.

[VAN08] Van Lamsweerde A., “Requirements Engineering; From
System Goals to UML Models to Software Specifications”,
Wiley, 2008.

[VDL98] Van Lamsweerde A., Darimont R. and Letier E.,
“Managing Conflicts in Goal-Driven Requirements
Engineering”, IEEE Trans, on Software. Engineering,
November 1998, Volume 24, No. 11, pp 908-926.

[VHB08] Vorobiev A., Han Jun N. and Bekmamedova, "An Ontology
Framework for Managing Security Attacks and Defenses in
Component Based Software Systems", 19th Australian
Conference ASWE, 2008.

[VLOO] Van Lamsweerde A. and Letier E., “Handling Obstacles in
Goal-Oriented Requirements Engineering”, IEEE Trans. On
Software Engineering, Special Issue on Exception
Handling, 2000, Volume 26, No. 10, pp 978-1005.

242

www.manaraa.com

[VRS99] Valente A., Russ T., MacGregor R. and Swartout W.,
“Building and (re)using an ontology of air campaign
planning”, IEEE Intelligent Systems 14, 1999, pp 27-36.

[VSM95] Van Lamsweerde A., Darimont R. and Massonet Ph.,
“Goal-Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt”, Proc. RE’95 -
2nd Inti IEEE Symp. on Requirements Engineering, 1995,
pp 194-203.

[VSS+05] Villela K., Santos G., Schnaider L., Rocha A. R. and
Travassos G. H., “The Use of Ontologies to Support
Knowledge Management in Software Development
Environments”, Journal of Brazilian Computer Science,
2005, Volume 11, No. 2, pp 45-60.

[WAR09] Waralak V. Siricharoen, “Merging Ontologies for Object
Oriented Software Engineering”, 2009.

[WER97] Werner C., “A Reuse Based O. O. Software Development
Environment”, In Proceedings of Tools, Beijing, China,
1997.

[WZX06] Wang Z., Zhan D. and Xu X., “A Component Retrieval
Method based on Feature Tree Matching”, International
Journal of Information Technology, 2006, Volume 12, No.
8.

[YKD+06] Yutao M., Keqing H., Dehui D., Jing L. and Yulan Yan, “A
Complexity Metrics Set for Large-Scale Object-Oriented
Software Systems”, Proceedings of The Sixth IEEE
International Conference on Computer and Information
Technology (CIT'2006), 2006, pp 188-189.

[ZZY+07] Zong-yong L. I., Zhi-xue W., Ying-ying Y. and Ying W.,
“Towards Multiple Ontology Framework for Requirements
Elicitation and Reuse”, In proc. of COMPSAC, 2007.

243

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

